A new feature selection approach for optimizing prediction models, applied to breast cancer subtype classification
Feature selection is a useful technique in classification (and regression) problems to find the most informative features for predicting but still preserves the data generality. However, some feature subset searching methods are too exhaustive while others are too greedy. On the other hand, paramete...
保存先:
主要な著者: | Phạm, Quang Huy, Alioune Ngom, Luis Rueda |
---|---|
フォーマット: | Conference poster |
言語: | English |
出版事項: |
IEEE
2023
|
主題: | |
オンライン・アクセス: | https://scholar.dlu.edu.vn/handle/123456789/2711 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
類似資料
-
A Novel Approach for Identifying Relevant Genes for Breast Cancer Survivability on Specific Therapies
著者:: Tabl, Ashraf Abou, 等
出版事項: (2023) -
Machine Learning Approaches for Breast Cancer Survivability Prediction
著者:: Phạm, Quang Huy
出版事項: (2023) -
A novel approach for identifying relevant genes for breast cancer survivability on specific therapies
著者:: Phạm, Quang Huy, 等
出版事項: (2023) -
Estimation and feature selection in high-dimensional mixtures-of-experts models
著者:: Huỳnh, Bảo Tuyên
出版事項: (2023) -
A Data Integration Approach for Detecting Biomarkers of Breast Cancer Survivability
著者:: Phạm, Quang Huy, 等
出版事項: (2023)