A new feature selection approach for optimizing prediction models, applied to breast cancer subtype classification
Feature selection is a useful technique in classification (and regression) problems to find the most informative features for predicting but still preserves the data generality. However, some feature subset searching methods are too exhaustive while others are too greedy. On the other hand, paramete...
Сохранить в:
Главные авторы: | Phạm, Quang Huy, Alioune Ngom, Luis Rueda |
---|---|
Формат: | Conference poster |
Язык: | English |
Опубликовано: |
IEEE
2023
|
Предметы: | |
Online-ссылка: | https://scholar.dlu.edu.vn/handle/123456789/2711 |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Схожие документы
-
A Novel Approach for Identifying Relevant Genes for Breast Cancer Survivability on Specific Therapies
по: Tabl, Ashraf Abou, et al.
Опубликовано: (2023) -
Machine Learning Approaches for Breast Cancer Survivability Prediction
по: Phạm, Quang Huy
Опубликовано: (2023) -
A novel approach for identifying relevant genes for breast cancer survivability on specific therapies
по: Phạm, Quang Huy, et al.
Опубликовано: (2023) -
Estimation and feature selection in high-dimensional mixtures-of-experts models
по: Huỳnh, Bảo Tuyên
Опубликовано: (2023) -
A Data Integration Approach for Detecting Biomarkers of Breast Cancer Survivability
по: Phạm, Quang Huy, et al.
Опубликовано: (2023)