Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor

The characteristics of activated sludge and membrane fouling were evaluated in a sponge-submerged membrane bioreactor (SSMBR) at different hydraulic retention times (HRTs) (6.67, 5.33 and 4.00h). At shorter HRT, more obvious membrane fouling was caused by exacerbated cake layer formation and aggrava...

Disgrifiad llawn

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Prif Awduron: Deng, Lijuan, Guo, Wenshan, Ngo, Huu Hao, Du, Bing, Wei, Qin, Tran, Ngoc Han, Nguyen Cong Nguyen, Chen, Shiao-Shing, Li, Jianxin
Fformat: Journal article
Iaith:English
Cyhoeddwyd: 2023
Pynciau:
Mynediad Ar-lein:https://scholar.dlu.edu.vn/handle/123456789/3013
https://www.sciencedirect.com/science/article/pii/S0960852416300323
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Disgrifiad
Crynodeb:The characteristics of activated sludge and membrane fouling were evaluated in a sponge-submerged membrane bioreactor (SSMBR) at different hydraulic retention times (HRTs) (6.67, 5.33 and 4.00h). At shorter HRT, more obvious membrane fouling was caused by exacerbated cake layer formation and aggravated pore blocking. Activated sludge possessed more extracellular polymeric substances (EPS) due to excessive growth of biomass and lower protein to polysaccharide ratio in soluble microbial products (SMP). The cake layer resistance was aggravated by increased sludge viscosity together with the accumulated EPS and biopolymer clusters (BPC) on membrane surface. However, SMP showed marginal effect on membrane fouling when SSMBRs were operated at all HRTs. The SSMBR with Gemfloc® addition at the optimum HRT of 6.67h demonstrated superior sludge characteristics such as larger floc size, less SMP in mixed liquor with higher protein/polysaccharide ratio, less SMP and BPC in cake layer, thereby further preventing membrane fouling.