Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds
Duckweeds are small, free-floating, largely asexual and highly neotenous organisms. They display the most rapid growth among flowering plants and are of growing interest in aquaculture and genome biology. Genomic and chromosomal data are still rare. Applying flow-cytometric genome size measurement,...
Đã lưu trong:
Những tác giả chính: | , , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Nature Publishing Group UK
2023
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3090 https://doi.org/10.1038/s41598-019-39332-w |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3090 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
Duckweeds are small, free-floating, largely asexual and highly neotenous organisms. They display the most rapid growth among flowering plants and are of growing interest in aquaculture and genome biology. Genomic and chromosomal data are still rare. Applying flow-cytometric genome size measurement, microscopic determination of frond, cell and nucleus morphology, as well as fluorescence in situ hybridization (FISH) for localization of ribosomal DNA (rDNA), we compared eleven species, representative for the five duckweed genera to search for potential correlations between genome size, cell and nuclei volume, simplified body architecture (neoteny), chromosome numbers and rDNA loci. We found a ~14-fold genome size variation (from 160 to 2203 Mbp), considerable differences in frond size and shape, highly variable guard cell and nucleus size, chromosome number (from 2n = 36 to 82) and number of 5S and 45S rDNA loci. In general, genome size is positively correlated with guard cell and nucleus volume (p < 0.001) and with the neoteny level and inversely with the frond size. In individual cases these correlations could be blurred for instance by particular body and cell structures which seem to be linked to specific floating styles. Chromosome number and rDNA loci variation between the tested species was independent of the genome size. We could not confirm previously reported intraspecific variation of chromosome numbers between individual clones of the genera Spirodela and Landoltia. |
format |
Journal article |
author |
Hoàng, Thị Như Phương Veit, Schubert Armin, Meister, Jörg, Fuchs Ingo, Schubert |
spellingShingle |
Hoàng, Thị Như Phương Veit, Schubert Armin, Meister, Jörg, Fuchs Ingo, Schubert Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds |
author_facet |
Hoàng, Thị Như Phương Veit, Schubert Armin, Meister, Jörg, Fuchs Ingo, Schubert |
author_sort |
Hoàng, Thị Như Phương |
title |
Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds |
title_short |
Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds |
title_full |
Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds |
title_fullStr |
Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds |
title_full_unstemmed |
Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds |
title_sort |
variation in genome size, cell and nucleus volume, chromosome number and rdna loci among duckweeds |
publisher |
Nature Publishing Group UK |
publishDate |
2023 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3090 https://doi.org/10.1038/s41598-019-39332-w |
_version_ |
1783866426440810496 |
spelling |
oai:scholar.dlu.edu.vn:123456789-30902023-11-15T04:53:47Z Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds Hoàng, Thị Như Phương Veit, Schubert Armin, Meister, Jörg, Fuchs Ingo, Schubert Duckweeds are small, free-floating, largely asexual and highly neotenous organisms. They display the most rapid growth among flowering plants and are of growing interest in aquaculture and genome biology. Genomic and chromosomal data are still rare. Applying flow-cytometric genome size measurement, microscopic determination of frond, cell and nucleus morphology, as well as fluorescence in situ hybridization (FISH) for localization of ribosomal DNA (rDNA), we compared eleven species, representative for the five duckweed genera to search for potential correlations between genome size, cell and nuclei volume, simplified body architecture (neoteny), chromosome numbers and rDNA loci. We found a ~14-fold genome size variation (from 160 to 2203 Mbp), considerable differences in frond size and shape, highly variable guard cell and nucleus size, chromosome number (from 2n = 36 to 82) and number of 5S and 45S rDNA loci. In general, genome size is positively correlated with guard cell and nucleus volume (p < 0.001) and with the neoteny level and inversely with the frond size. In individual cases these correlations could be blurred for instance by particular body and cell structures which seem to be linked to specific floating styles. Chromosome number and rDNA loci variation between the tested species was independent of the genome size. We could not confirm previously reported intraspecific variation of chromosome numbers between individual clones of the genera Spirodela and Landoltia. 9 1 3234 2023-10-24T04:01:59Z 2023-10-24T04:01:59Z 2019-03-01 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3090 https://doi.org/10.1038/s41598-019-39332-w en Scientific reports 1. Bog, M. et al. Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta 232, 609–619, https://doi.org/10.1007/s00425-010-1201-2 (2010). 2. Tippery, N. P., Les, D. H. & Crawford, D. J. Evaluation of phylogenetic relationships in Lemnaceae using nuclear ribosomal data. Plant Biol 17(Suppl 1), 50–58, https://doi.org/10.1111/plb.12203 (2015). 3. Wang, W. et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5, 3311, https://doi.org/10.1038/ncomms4311 (2014). 4. Khurana, J. P., Tamot, B. K. & Maheshwari, S. C. Induction of flowering in a duckweed, Wolffia microscopica, under noninductive long days by 8-hydroxyquinoline. Plant Cell Physiol 27, 373–376 (1986). 5. Krajnčič, B., Nemec, J., Tojnko, S. & Vogrin, A. Promotion of flowering by Mn-EDDHA in the long-short-day plant Wolffia arrhiza (L.) Horkel ex Wimm. J Plant Physiol 153, 777–780, https://doi.org/10.1016/S0176-1617(98)80235-6 (1998). 6. Bernard, F. A., Bernard, J. M. & Denny, P. Flower structure, anatomy and life history of Wolffia australiana (Benth.) den Hartog and van der Plas. Bull Torrey Bot Club 117, 18–26 (1990). 7. Bog, M. et al. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP). Planta 237, 1–13, https://doi.org/10.1007/s00425-012- 1777-9 (2013). 8. Cao, H. X., Vu, G. T., Wang, W., Messing, J. & Schubert, I. Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol 17(Suppl 1), 120–124, https://doi.org/10.1111/plb.12194 (2015). 9. Landolt, E. The family of Lemnaceae – a monographic study (Vol 1). Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule, Zürich (1986). 10. Landolt, E. The family of Lemnaceae – a monographic study (Vol 2). Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule, Zürich (1987). 11. Dolezel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2, 2233–2244, https://doi.org/10.1038/nprot.2007.310 (2007). 12. Bog, M. et al. Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP). Hydrobiologia 749, 169–182, https://doi.org/10.1007/s10750-014- 2163-3 (2015). 13. Wang, W., Kerstetter, R. A. & Michael, T. P. Evolution of Genome Size in Duckweeds (Lemnaceae). J Bot 2011, 1–9, https://doi. org/10.1155/2011/570319 (2011). 14. Jovtchev, G., Schubert, V., Meister, A., Barow, M. & Schubert, I. Nuclear DNA content and nuclear and cell volume are positively correlated in angiosperms. Cytogenet Genome Res 114, 77–82, https://doi.org/10.1159/000091932 (2006). 15. Kladnik, A. Relationship of nuclear genome size, cell volume and nuclei volume in endosperm of Sorghum bicolor. Acta Biol Slov 58, 3–11 (2015). 16. Les, D. H., Crawford, D. J., Landolt, E., Gabel, J. D. & Kimball, R. T. Phylogeny and Systematics of Lemnaceae, the Duckweed Family. Syst Bot 27, 221–240 (2002). 17. Bennett, M. D., Leitch, I. J., Price, H. J. & Johnston, J. S. Comparisons with Caenorhabditis (approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb. Ann Bot 91, 547–557 (2003). 18. Shtein, I., Popper, Z. A. & Harpaz-Saad, S. Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns. Plant Signal Behav 12, e1339858, https://doi.org/10.1080/15592324.2017.1339858 (2017). 19. Meckel, T., Gall, L., Semrau, S., Homann, U. & Thiel, G. Guard cells elongate: relationship of volume and surface area during stomatal movement. Biophys J 92, 1072–1080, https://doi.org/10.1529/biophysj.106.092734 (2007). 20. Mursalimov, S. & Deineko, E. Cytomixis in plants: facts and doubts. Protoplasma 255, 719–731, https://doi.org/10.1007/s00709-017- 1188-7 (2018). 21. Beppu, T. & Takimoto, A. Geographical distribution and cytological variation of Lemna paucicostata Hegelm. in Japan. Bot Mag (Tokyo) 94, 11–20 (1981). 22. Urbanska, W. K. Cytological variation within the family of “Lemnaceae”. Veröffentlichungen des Geobotanischen Institutes der Eidg. Tech. Hochschule, Stiftung Rübel, in Zürich. https://doi.org/10.5169/seals-308615 (1980). 23. Geber, G. Zur Karyosystematik der Lemnaceae. (PhD thesis, University of Vienna, Vienna, Austria, 1989). 24. Roy, R. P. & Dutt, B. Cytology of Wolffia microscopica Kurz. Cytologia 32, 270–272 (1967). 25. Hoang, P. N. T. et al. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping and Oxford Nanopore technologies. Plant J. https://doi.org/10.1111/tpj.14049 (2018). 26. Kobayashi, T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc Jpn Acad Ser B Phys Biol Sci 90, 119–129 (2014). 27. Rosato, M., Kovarik, A., Garilleti, R. & Rossello, J. A. Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. PLoS One 11, e0162544, https://doi.org/10.1371/journal.pone.0162544 (2016). 28. Michael, T. P. et al. Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and shortread DNA sequencing strategies. Plant J 89, 617–635, https://doi.org/10.1111/tpj.13400 (2017). 29. Price, H. J., Sparrow, A. H. & Nauman, A. F. Correlations between nuclear volume, cell volume and DNA content in meristermatic cells in herbaceous angiosperms. Experientia 29, 1028–1029 (1973). 30. Mirsky, A. E. & Ris, H. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J Gen Physiol 34, 451–462, https://doi.org/10.1085/jgp.34.4.451 (1951). 31. Thomas, C. A. Jr. The genetic organization of chromosomes. Annu Rev Genet 5, 237–256, https://doi.org/10.1146/annurev. ge.05.120171.001321 (1971). 32. Vu, G. T. H., Cao, H. X., Reiss, B. & Schubert, I. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage. New Phytol 214, 1712–1721, https://doi.org/10.1111/nph.14490 (2017). 33. Schubert, I. & Vu, G. T. H. Genome stability and evolution: attempting a holistic view. Trends Plant Sci 21, 749–757, https://doi. org/10.1016/j.tplants.2016.06.003 (2016). Nature Publishing Group UK |