A taxonomic revision of Lemna sect. Uninerves (Lemnaceae)
Lemna sect. Uninerves Hegelm. consists of three species, Lemna minuta Kunth (synonym L. minuscula), L. valdiviana Phil. and L. yungensis Landolt. Lemna yungensis was discovered growing on rocks in the Yungas in Bolivia by E. Landolt and was described just 20 years ago. In the original description,...
Đã lưu trong:
Những tác giả chính: | , , , , , , , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
John Wiley & Sons, Inc.
2023
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3091 https://doi.org/10.1002/tax.12188 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3091 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
Lemna sect. Uninerves Hegelm. consists of three species, Lemna minuta Kunth (synonym L. minuscula), L. valdiviana
Phil. and L. yungensis Landolt. Lemna yungensis was discovered growing on rocks in the Yungas in Bolivia by E. Landolt and
was described just 20 years ago. In the original description, Landolt reported that this species is closely related to L. valdiviana
and that it is difficult to distinguish the three species on a morphological basis. Therefore, the taxonomic position and status of
L. yungensis remained controversial. Here, we carried out a detailed taxonomic study, integrating approaches that include quantitative
morphometry, metabolomic profiling by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS)
as well as molecular genetic analysis using amplified fragment length polymorphism (AFLP), and barcoding of plastidic
sequences. We also investigated genome sizes of clones of the three species. Whereas L. minuta can easily be differentiated
from L. valdiviana and L. yungensis, it was not possible to distinguish L. valdiviana from L. yungensis with any of the methods used.
These data imply that L. yungensis is identical to L. valdiviana. Thus, the name L. yungensis should be synonymised with the name
L. valdiviana, since this is the older name. |
format |
Journal article |
author |
Manuela, Bog K Sowjanya, Sree Joerg Fuchs Ingo, Schubert Jan, Kuever Andreas, Rabenstein Simona, Paolacci Marcel, AK Jansen Klaus, J Appenroth Hoàng, Thị Như Phương |
spellingShingle |
Manuela, Bog K Sowjanya, Sree Joerg Fuchs Ingo, Schubert Jan, Kuever Andreas, Rabenstein Simona, Paolacci Marcel, AK Jansen Klaus, J Appenroth Hoàng, Thị Như Phương A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) |
author_facet |
Manuela, Bog K Sowjanya, Sree Joerg Fuchs Ingo, Schubert Jan, Kuever Andreas, Rabenstein Simona, Paolacci Marcel, AK Jansen Klaus, J Appenroth Hoàng, Thị Như Phương |
author_sort |
Manuela, Bog |
title |
A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) |
title_short |
A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) |
title_full |
A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) |
title_fullStr |
A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) |
title_full_unstemmed |
A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) |
title_sort |
taxonomic revision of lemna sect. uninerves (lemnaceae) |
publisher |
John Wiley & Sons, Inc. |
publishDate |
2023 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3091 https://doi.org/10.1002/tax.12188 |
_version_ |
1783866426755383296 |
spelling |
oai:scholar.dlu.edu.vn:123456789-30912023-11-15T04:51:50Z A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) Manuela, Bog K Sowjanya, Sree Joerg Fuchs Ingo, Schubert Jan, Kuever Andreas, Rabenstein Simona, Paolacci Marcel, AK Jansen Klaus, J Appenroth Hoàng, Thị Như Phương Lemna sect. Uninerves Hegelm. consists of three species, Lemna minuta Kunth (synonym L. minuscula), L. valdiviana Phil. and L. yungensis Landolt. Lemna yungensis was discovered growing on rocks in the Yungas in Bolivia by E. Landolt and was described just 20 years ago. In the original description, Landolt reported that this species is closely related to L. valdiviana and that it is difficult to distinguish the three species on a morphological basis. Therefore, the taxonomic position and status of L. yungensis remained controversial. Here, we carried out a detailed taxonomic study, integrating approaches that include quantitative morphometry, metabolomic profiling by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) as well as molecular genetic analysis using amplified fragment length polymorphism (AFLP), and barcoding of plastidic sequences. We also investigated genome sizes of clones of the three species. Whereas L. minuta can easily be differentiated from L. valdiviana and L. yungensis, it was not possible to distinguish L. valdiviana from L. yungensis with any of the methods used. These data imply that L. yungensis is identical to L. valdiviana. Thus, the name L. yungensis should be synonymised with the name L. valdiviana, since this is the older name. 69 1 56 - 66 2023-10-24T04:07:11Z 2023-10-24T04:07:11Z 2020-02 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3091 https://doi.org/10.1002/tax.12188 en Taxon Appenroth, K.-J., Teller, S. & Horn, M. 1996. Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol. Pl. 38: 95–106. https://doi.org/10.1007/BF02879642 Bader, O. 2013. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics 13: 788–799. https://doi.org/10.1002/pmic.201200468 Bänfer, G., Fiala, B. &Weising, K. 2004. AFLP analysis of phylogenetic relationships among myrmecophytic species of Macaranga (Euphorbiaceae) and their allies. Pl. Syst. Evol. 249: 213–231. https://doi.org/10.1007/s00606-004-0219-4 Blättel, V., Petri, A., Rabenstein, A., Kuever, J. & König, H. 2013. Differentiation of species of the genus Saccharomyces using biomolecular fingerprinting methods. Appl. Microbiol. Biotechnol. 97: 4597–4606. https://doi.org/10.1007/s00253-013-4823-z Bog, M., Baumbach, H., Schween, U., Hellwig, F., Landolt, E. & Appenroth, K.-J. 2010. Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta 232: 609–619. https://doi.org/10.1007/ s00425-010-1201-2 Bog, M., Schneider, P., Hellwig, F., Sachse, S., Kochieva, E.Z., Martyrosian, E., Landolt, E.&Appenroth, K.-J. 2013. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP). Planta 237: 1–13. https://doi.org/10.1007/s00425-012-1777-9 Bog, M., Lautenschlager, U., Landrock, M.F., Landolt, E., Fuchs, J., Sree, K.S., Oberprieler, C. & Appenroth, K.-J. 2015. Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP). Hydrobiologia 749: 169–182. https://doi.org/10.1007/s10750-014-2163-3 Bog, M., Landrock, M.F., Drefahl, D., Sree, K.S.&Appenroth, K.J. 2018. Fingerprinting by amplified fragment length polymorphism (AFLP) and barcoding by three plastidic markers in the genus Wolffiella Hegelm. Pl. Syst. Evol. 304: 373–386. https://doi.org/ 10.1007/s00606-017-1482-z Bog, M., Xu, S., Himmelbach, A., Brandt, R., Wagner, F., Appenroth, K.J. & Sree, K.S. 2020. Genotyping-by-sequencing for species delimitation in Lemna section Uninerves Hegelm. (Lemnaceae). Pp. 115–123 in: Cao, X.H., Fourounjian, P. & Wang, W. (eds.), The duckweed genomes. Berlin, Heidelberg: Springer. Bonin, A., Ehrich, D. & Manel, S. 2007. Statistical analysis of amplified fragment length polymorphism data: A toolbox for molecular ecologists and evolutionists. Molec. Ecol. 16: 3737–3758. https:// doi.org/10.1111/j.1365-294X.2007.03435.x Borchert, T., Fuchs, J.,Winkelmann, T. & Hohe, A. 2007. Variable DNA content of Cyclamen persicum regenerated via somatic embryogenesis: Rethinking the concept of long-term callus and suspension cultures. Pl. Cell Tissue Organ Cult. 90: 255–263. https://doi.org/10.1007/s11240-007-9264-x Borisjuk, N., Chu, P., Gutierrez, R., Zhang, H., Acosta, K., Friesen, N., Sree, K.S., Garcia, C., Appenroth, K.J. & Lam, E. 2015. Assessment, validation and deployment strategy of a two barcode protocol for facile genotyping of duckweed species. Pl. Biol. 17(Suppl 1): 42–49. https://doi.org/10.1111/plb. 12229 Ceschin, S., Abati, S., Leacche, I., Iamonico, D., Iberite, M. & Zuccarello, V. 2016a. Does the alien Lemna minuta show an invasive behavior outside its original range? Evidence of antagonism with the native L. minor in central Italy. Int. Rev. Hydrobiol. 101: 173–181. https://doi.org/10.1002/iroh.201601841 Ceschin, S., Leacche, I., Pascucci, S. & Abati, S. 2016b. Morphological study of Lemna minuta Kunth, an alien species often mistaken for the native L. minor L. (Araceae). Aquatic Bot. 131: 51–56. https://doi.org/10.1016/j.aquabot.2016.01.005 Ceschin, S., Abati S., Ellwood, N.T.W.&Zuccarello, V. 2018. Riding invasion waves: Spatial and temporal patterns of the invasive Lemna minuta from its arrival to its spread across Europe. Aquatic Bot. 150: 1–8. https://doi.org/10.1016/j.aquabot.2018.06.002 Clement, M., Posada, D. & Crandall, K.A. 2000. TCS: A computer program to estimate gene genealogies. Molec. Ecol. 9(10): 1657–1660. https://doi.org/10.1046/j.1365-294x.2000.01020.x Crawford, D.J., Landolt, E. & Les, D.H. 1996. An allozyme study of two sibling species of Lemna (Lemnaceae) with comments on their morphology, ecology and distribution. Bull. Torey Bot. Club 123: 1–6. https://doi.org/10.2307/2996300 Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. 2012. jModel- Test 2: More models, new heuristics and parallel computing. Nature, Meth. 9: 772. https://doi.org/10.1038/nmeth.2109 Doležel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51A: 127–128. https://doi.org/10.1002/cyto.a.10013 Doležel, J., Greilhuber, J. & Suda, J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protoc. 2: 2233–2244. https://doi.org/10.1038/nprot.2007.310 Ezard, T., Fujisawa, T. & Barraclough, T. 2017. splits: SPecies’ LImits by Threshold Statistics. https://R-Forge.R-project.org/ projects/splits/ Gemeinholzer, B. & Bachmann, K. 2005. Examining morphological and molecular diagnostic character states of Cichorium intybus L. (Asteraceae) and C. spinosum L. Pl. Syst. Evol. 253: 105–123. https://doi.org/10.1007/s00606-004-0272-6 Goslee, S.C. & Urban, D.L. 2007. The ecodist package for dissimilarity-based analysis of ecological data. J. Statist. Software 22(7). https://doi.org/10.18637/jss.v022.i07 Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Res. 41: 95–98. Holland, B.R., Clarke, A.C. & Meudt, H.M. 2008. Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst. Biol. 57: 347–366. https://doi.org/10.1080/ 10635150802044037 Humboldt, F.W.H.A. von, Bonpland, A.&Kunth, C.S. 1815. Nova genera et species plantarum, quarto ed., vol. 1. Paris: sumtibus Librariae Graeco-Latino-Germanicae. https://doi.org/10.5962/bhl.title.640 Jensen, R.H. & Arendrup, M.C. 2011. Candida palmioleophila: Characterization of a previously overlooked pathogen and its unique susceptibility profile in comparison with five related species. J. Clin. Microbiol. 49: 549–556. https://doi.org/10.1128/ JCM.02071-10 Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. 2017. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33: 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 Kirjakov, I.K. & Velichkova, K.N. 2016. Invasive species Lemna L. (Lemnaceae) in the flora of Bulgaria. Period. Biol. 118: 131–138. https://doi.org/10.18054/pb.2016.118.2.4165 Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. 2019. RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453–4455. https://doi.org/10.1093/bioinformatics/btz305 Krader, P. & Emerson, D. 2004. Identification of archaea and some extremophilic bacteria using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Extremophiles 8(4): 259–268. https://doi.org/10.1007/s00792-004-0382-7 John Wiley & Sons, Inc. |