Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries
monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n...
Đã lưu trong:
Những tác giả chính: | , , , , , , , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Nature Publishing Group UK
2023
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3092 https://doi.org/10.1038/s41598-020-75728-9 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3092 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold
in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two
mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36;
160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based
on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S.
intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both
species’ genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy
numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of
a few new small chromosome rearrangements between both Spirodela species refined the karyotype
and the chromosomal sequence assignment for S. intermedia. |
format |
Journal article |
author |
Hoàng, Thị Như Phương Anne Fiebig Petr Novák Jiří Macas Hieu X Cao Anton Stepanenko Guimin Chen Nikolai Borisjuk Uwe Scholz Ingo Schubert |
spellingShingle |
Hoàng, Thị Như Phương Anne Fiebig Petr Novák Jiří Macas Hieu X Cao Anton Stepanenko Guimin Chen Nikolai Borisjuk Uwe Scholz Ingo Schubert Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries |
author_facet |
Hoàng, Thị Như Phương Anne Fiebig Petr Novák Jiří Macas Hieu X Cao Anton Stepanenko Guimin Chen Nikolai Borisjuk Uwe Scholz Ingo Schubert |
author_sort |
Hoàng, Thị Như Phương |
title |
Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries |
title_short |
Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries |
title_full |
Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries |
title_fullStr |
Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries |
title_full_unstemmed |
Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries |
title_sort |
chromosome-scale genome assembly for the duckweed spirodela intermedia, integrating cytogenetic maps, pacbio and oxford nanopore libraries |
publisher |
Nature Publishing Group UK |
publishDate |
2023 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3092 https://doi.org/10.1038/s41598-020-75728-9 |
_version_ |
1783866427086733312 |
spelling |
oai:scholar.dlu.edu.vn:123456789-30922023-11-15T04:52:33Z Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries Hoàng, Thị Như Phương Anne Fiebig Petr Novák Jiří Macas Hieu X Cao Anton Stepanenko Guimin Chen Nikolai Borisjuk Uwe Scholz Ingo Schubert monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species’ genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia. 10 1 19230 2023-10-24T04:12:38Z 2023-10-24T04:12:38Z 2020-05-11 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3092 https://doi.org/10.1038/s41598-020-75728-9 en Scientific reports Phytoremediation 16, 1221–1227. https ://doi.org/10.1080/15226 514.2013.82145 2 (2014). 2. Tatar, ŞY. & Öbek, E. Potential of Lemna gibba L. and Lemna minor L. for accumulation of Boron from secondary effluents. Ecol. Eng. 70, 332–336. https ://doi.org/10.1016/j.ecole ng.2014.06.033 (2014). 3. Teixeira, S., Vieira, M. N., Espinha Marques, J. & Pereira, R. Bioremediation of an iron-rich mine effluent by Lemna minor. Int. J. Phytoremediation 16, 1228–1240. https ://doi.org/10.1080/15226 514.2013.82145 4 (2014). 4. Verma, R. & Suthar, S. Synchronized urban wastewater treatment and biomass production using duckweed Lemna gibba L. Ecol. Eng. 64, 337–343. https ://doi.org/10.1016/j.ecole ng.2013.12.055 (2014). 5. Fourounjian, P., Fakhoorian, T. & Cao, X. Importance of duckweeds in basic research and their industrial applications. In The Duckweed Genomes (eds Cao, X. H. et al.) 1–17 (Springer, Berlin, 2020). https ://doi.org/10.1007/978-3-030-11045 -1_1. 6. Vu, G., Fourounjian, P., Wang, W. & Cao, X. Future prospects of duckweed research and applications. In The Duckweed Genomes (eds Cao, X. H. et al.) 179–185 (Springer, Berlin, 2020). https ://doi.org/10.1007/978-3-030-11045 -1_18. 7. Ziegler, P., Sree, K. S. & Appenroth, K. J. Duckweeds for water remediation and toxicity testing. Toxicol. Environ. Chem. 98, 1127–1154. https ://doi.org/10.1080/02772 248.2015.10947 01 (2016). 8. Ziegler, P., Sree, K. S. & Appenroth, K. J. The uses of duckweed in relation to water remediation. Desalination & Water Treatment, 63, 327–342 (2017). In 5th International Conference on Environmental Management, Engineering, Planning and Economics, Vol. 63, 327–342 (Balaban Publishers - Desalination Publications, Mykonos, Greece, 2017). 9. Ziegler, P., Adelmann, K., Zimmer, S., Schmidt, C. & Appenroth, K. J. Relative in vitro growth rates of duckweeds (Lemnaceae)—the most rapidly growing higher plants. Plant Biol. 17(Suppl 1), 33–41. https ://doi.org/10.1111/plb.12184 (2015). 10. Appenroth, K.-J. et al. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Front. Chem. 6, 483. https ://doi.org/10.3389/fchem .2018.00483 (2018). 11. Sońta, M., Rekiel, A. & Batorska, M. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture: a review. Ann. Anim. Sci. 19, 257–271. https ://doi.org/10.2478/aoas-2018-0048 (2019). 12. Ren, H. et al. Enhanced biogas production in the duckweed anaerobic digestion process. J. Energy Resour. Technol. 140, 041805. https ://doi.org/10.1115/1.40397 82 (2018). 13. Cui, W. & Cheng, J. J. Growing duckweed for biofuel production: a review. Plant Biol. 17(Suppl 1), 16–23. https ://doi.org/10.1111/ plb.12216 (2015). 14. Bog, M. et al. Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta 232, 609–619. https ://doi.org/10.1007/s0042 5-010-1201-2 (2010). 15. Bog, M. et al. A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon 69, 56–66. https ://doi.org/10.1002/tax.12188 (2020). 16. Tippery, N. P., Les, D. H. & Crawford, D. J. Evaluation of phylogenetic relationships in Lemnaceae using nuclear ribosomal data. Plant Biol. 17(Suppl 1), 50–58. https ://doi.org/10.1111/plb.12203 (2015). 17. Bog, M. et al. Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP). Hydrobiologia 749, 169–182. https ://doi.org/10.1007/s1075 0-014- 2163-3 (2015). 18. Hoang, P. T. N., Schubert, V., Meister, A., Fuchs, J. & Schubert, I. Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci. Rep. 9, 3234. https ://doi.org/10.1038/s4159 8-019-39332 -w (2019). 19. Landolt, E. The family of Lemnaceae: a monographic study (Vol 1) (Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule, Zürich, 1986). 20. Wang, W., Kerstetter, R. A. & Michael, T. P. Evolution of genome size in duckweeds (Lemnaceae). J. Bot. 1–9, 2011. https ://doi. org/10.1155/2011/57031 9 (2011). 21. Wang, W. et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 5, 3311. https ://doi.org/10.1038/ncomm s4311 (2014). 22. Harkess, A. et al. A new Spirodela polyrhiza genome and proteome reveal a conserved chromosomal structure with high abundances of proteins favoring energy production. J. bioRxiv https ://doi.org/10.1101/2020.01.23.90945 7 (2020). 23. Cao, H. X. et al. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol. 209, 354–363. https ://doi.org/10.1111/nph.13592 (2016). 24. Hoang, P. N. T. et al. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping and Oxford Nanopore technologies. Plant J. 96, 670–684. https ://doi.org/10.1111/tpj.14049 (2018). 25. Michael, T. P. et al. Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J. https ://doi.org/10.1111/tpj.13400 (2017). 26. Ho, E. K. H., Bartkowska, M., Wright, S. I. & Agrawal, A. F. Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. New Phytol. 224, 1361–1371. https ://doi.org/10.1111/nph.16056 (2019). 27. Xu, S. et al. Low genetic variation is associated with low mutation rate in the giant duckweed. Nat. Commun. 10, 1243. https ://doi. org/10.1038/s4146 7-019-09235 -5 (2019). 28. Chamala, S. et al. Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science 342, 1516–1517. https ://doi.org/10.1126/scien ce.12411 30 (2013). Nature Publishing Group UK |