Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds

Duckweeds represent a small, free-floating aquatic family (Lemnaceae) of the monocot order Alismatales with the fastest growth rate among flowering plants. They comprise five genera (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) varying in genome size and chromosome number. Spirodela polyr...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Hoàng, Thị Như Phương, Jean, Marie Rouillard, Jiří, Macas, Ivona, Kubalová, Veit, Schubert, Ingo, Schubert
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Springer Berlin Heidelberg 2023
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/3171
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-3171
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
description Duckweeds represent a small, free-floating aquatic family (Lemnaceae) of the monocot order Alismatales with the fastest growth rate among flowering plants. They comprise five genera (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) varying in genome size and chromosome number. Spirodela polyrhiza had the first sequenced duckweed genome. Cytogenetic maps are available for both species of the genus Spirodela (S. polyrhiza and S. intermedia). However, elucidation of chromosome homeology and evolutionary chromosome rearrangements by cross-FISH using Spirodela BAC probes to species of other duckweed genera has not been successful so far. We investigated the potential of chromosome-specific oligo-FISH probes to address these topics. We designed oligo-FISH probes specific for one S. intermedia and one S. polyrhiza chromosome (Fig. 1a). Our results show that these oligo-probes cross-hybridize with the homeologous regions of the other congeneric species, but are not suitable to uncover chromosomal homeology across duckweeds genera. This is most likely due to too low sequence similarity between the investigated genera and/or too low probe density on the target genomes. Finally, we suggest genus-specific design of oligo-probes to elucidate chromosome evolution across duckweed genera.
format Journal article
author Hoàng, Thị Như Phương
Jean, Marie Rouillard
Jiří, Macas
Ivona, Kubalová
Veit, Schubert
Ingo, Schubert
spellingShingle Hoàng, Thị Như Phương
Jean, Marie Rouillard
Jiří, Macas
Ivona, Kubalová
Veit, Schubert
Ingo, Schubert
Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds
author_facet Hoàng, Thị Như Phương
Jean, Marie Rouillard
Jiří, Macas
Ivona, Kubalová
Veit, Schubert
Ingo, Schubert
author_sort Hoàng, Thị Như Phương
title Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds
title_short Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds
title_full Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds
title_fullStr Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds
title_full_unstemmed Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds
title_sort limitation of current probe design for oligo-cross-fish, exemplified by chromosome evolution studies in duckweeds
publisher Springer Berlin Heidelberg
publishDate 2023
url https://scholar.dlu.edu.vn/handle/123456789/3171
_version_ 1783866428379627520
spelling oai:scholar.dlu.edu.vn:123456789-31712023-11-15T08:34:59Z Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds Hoàng, Thị Như Phương Jean, Marie Rouillard Jiří, Macas Ivona, Kubalová Veit, Schubert Ingo, Schubert Duckweeds represent a small, free-floating aquatic family (Lemnaceae) of the monocot order Alismatales with the fastest growth rate among flowering plants. They comprise five genera (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) varying in genome size and chromosome number. Spirodela polyrhiza had the first sequenced duckweed genome. Cytogenetic maps are available for both species of the genus Spirodela (S. polyrhiza and S. intermedia). However, elucidation of chromosome homeology and evolutionary chromosome rearrangements by cross-FISH using Spirodela BAC probes to species of other duckweed genera has not been successful so far. We investigated the potential of chromosome-specific oligo-FISH probes to address these topics. We designed oligo-FISH probes specific for one S. intermedia and one S. polyrhiza chromosome (Fig. 1a). Our results show that these oligo-probes cross-hybridize with the homeologous regions of the other congeneric species, but are not suitable to uncover chromosomal homeology across duckweeds genera. This is most likely due to too low sequence similarity between the investigated genera and/or too low probe density on the target genomes. Finally, we suggest genus-specific design of oligo-probes to elucidate chromosome evolution across duckweed genera. 130 1 15-25 2023-11-15T08:34:52Z 2023-11-15T08:34:52Z 2021-03 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3171 10.1007/s00412-020-00749-2 en Chromosoma 1432-0886 Appenroth K-J, Teller S, Horn M (1996) Photophysiology of turion formation and germination inSpirodela polyrhiza. Biol Plant 38:95– 106. https://doi.org/10.1007/bf02879642 Aurich-Costa J, Zamechek L, Keenan P, Bradley S (2007) Oligo fluorescence in situ hybridization (oligo-fish), a new strategy for enumerating chromosomes in interphase nuclei. Fertil Steril 88:S86. https:// doi.org/10.1016/j.fertnstert.2007.07.287 Bog M, Sree KS, Fuchs J, Hoang PTN, Schubert I, Kuever J, Rabenstein A, Paolacci S, Jansen MAK, Appenroth KJ (2020) A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon 69:56–66. https://doi.org/10.1002/tax.12188 Braz GT et al (2018) Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208:513–523. https://doi.org/10.1534/genetics.117. 300344 Cao HX, Vu GT, Wang W, Appenroth KJ, Messing J, Schubert I (2016) The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol 209:354–363. https://doi.org/10.1111/nph.13592 de Beukelaar MFA, Zeinstra GG, Mes JJ, Fischer ARH (2019) Duckweed as human food. The influence of meal context and information on duckweed acceptability of Dutch consumers. Food Qual Prefer 71:76–86. https://doi.org/10.1016/j.foodqual.2018.06.005 Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200:771–779. https://doi.org/10.1534/ genetics.115.177642 Harkess A,McLaughlin F, Bilkey N, Elliot K, Emenecker R, Mattoon E, Miller K, Czymme KK, Vierstra R,Meyers BC, Michael TP (2020) A new Spirodela polyrhiza genome and proteome reveal a conserved chromosomal structure with high abundances of proteins favoring energy production. bioRxiv. https://doi.org/10.1101/2020. 01.23.909457 Hoang PTN (2019) Comparative cytology and cytogenomics for representative species of the five duckweed genera., Halle/S., Martin- Luther-Universität Halle-Wittenberg Hoang PTN, Fiebig A, Novák P, Macas J, Cao HX, Stepanenko A, Chen G, Borisjuk N, Scholz U, Schubert I (2020) Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Sci Rep 10:19230. https://doi.org/10.1038/s41598-020-75728-9 Hoang PTN, Schubert I (2017) Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma 126:729–739. https://doi. org/10.1007/s00412-017-0636-7 Hoang PTN, Schubert V,Meister A, Fuchs J, Schubert I (2019) Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci Rep 9:3234. https://doi.org/10. 1038/s41598-019-39332-w Hoang PNT et al (2018) Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping and Oxford Nanopore technologies. Plant J 96:670– 684. https://doi.org/10.1111/tpj.14049 Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780 Jiang JM (2019) Fluorescent in situ hybridization in plants: recent developments and future directions. Chromosome Res 27:153-165. https://doi.org/10.1007/s10577-019-09607-z Springer Berlin Heidelberg