Neutron transition strengths of 21+ states in the neutron-rich oxygen isotopes determined from inelastic proton scattering
A coupled-channel analysis of the 18,20,22O(p,p′) data has been performed to determine the neutron transition strengths of the 2+1 states in oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and isospin-dependent ver...
Đã lưu trong:
Những tác giả chính: | , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
APS publications
2024
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3301 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3301 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
A coupled-channel analysis of the 18,20,22O(p,p′) data has been performed to determine the neutron transition strengths of the 2+1 states in oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and isospin-dependent version of the CDM3Y6 interaction was constructed, based on the Brueckner-Hartree-Fock calculation of nuclear matter, for the folding model input. Given an accurate isovector density dependence of the CDM3Y6 interaction, the isoscalar (δ0) and isovector (δ1) deformation lengths of the 2+1 states in 18,20,22O have been extracted from the folding model analysis of the (p,p′) data. A specific N dependence of δ0 and δ1 has been established which can be linked to the neutron shell closure occurring at N approaching 16. The strongest isovector deformation was found for the 2+1 state in 20O, with δ1 about 2.5 times larger than δ0, which indicates a strong core polarization by the valence neutrons in 20O. The ratios of the neutron/proton transition matrix elements (Mn/Mp) determined for the 2+1 states in 18,20O have been compared with those deduced from the mirror symmetry, using the measured B(E2) values of the 2+1 states in the proton-rich 18Ne and 20Mg nuclei, to discuss the isospin impurity in the 2+1 excitation of the A=18, T=1 and A=20, T=2 isobars. |
format |
Journal article |
author |
Nguyễn, Đăng Chiến Dao Tien Khoa |
spellingShingle |
Nguyễn, Đăng Chiến Dao Tien Khoa Neutron transition strengths of 21+ states in the neutron-rich oxygen isotopes determined from inelastic proton scattering |
author_facet |
Nguyễn, Đăng Chiến Dao Tien Khoa |
author_sort |
Nguyễn, Đăng Chiến |
title |
Neutron transition strengths of 21+ states in the neutron-rich oxygen isotopes determined from inelastic proton scattering |
title_short |
Neutron transition strengths of 21+ states in the neutron-rich oxygen isotopes determined from inelastic proton scattering |
title_full |
Neutron transition strengths of 21+ states in the neutron-rich oxygen isotopes determined from inelastic proton scattering |
title_fullStr |
Neutron transition strengths of 21+ states in the neutron-rich oxygen isotopes determined from inelastic proton scattering |
title_full_unstemmed |
Neutron transition strengths of 21+ states in the neutron-rich oxygen isotopes determined from inelastic proton scattering |
title_sort |
neutron transition strengths of 21+ states in the neutron-rich oxygen isotopes determined from inelastic proton scattering |
publisher |
APS publications |
publishDate |
2024 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3301 |
_version_ |
1798256983202070528 |
spelling |
oai:scholar.dlu.edu.vn:123456789-33012024-03-01T08:25:06Z Neutron transition strengths of 21+ states in the neutron-rich oxygen isotopes determined from inelastic proton scattering Nguyễn, Đăng Chiến Dao Tien Khoa A coupled-channel analysis of the 18,20,22O(p,p′) data has been performed to determine the neutron transition strengths of the 2+1 states in oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and isospin-dependent version of the CDM3Y6 interaction was constructed, based on the Brueckner-Hartree-Fock calculation of nuclear matter, for the folding model input. Given an accurate isovector density dependence of the CDM3Y6 interaction, the isoscalar (δ0) and isovector (δ1) deformation lengths of the 2+1 states in 18,20,22O have been extracted from the folding model analysis of the (p,p′) data. A specific N dependence of δ0 and δ1 has been established which can be linked to the neutron shell closure occurring at N approaching 16. The strongest isovector deformation was found for the 2+1 state in 20O, with δ1 about 2.5 times larger than δ0, which indicates a strong core polarization by the valence neutrons in 20O. The ratios of the neutron/proton transition matrix elements (Mn/Mp) determined for the 2+1 states in 18,20O have been compared with those deduced from the mirror symmetry, using the measured B(E2) values of the 2+1 states in the proton-rich 18Ne and 20Mg nuclei, to discuss the isospin impurity in the 2+1 excitation of the A=18, T=1 and A=20, T=2 isobars. 79 3 034314 2024-03-01T08:25:00Z 2024-03-01T08:25:00Z 2009 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3301 10.1103/PhysRevC.79.034314 en Physical Review C 2469-9985 [1] A. M. Bernstein, V. R. Brown, and V. A. Madsen, Comm. Nucl. Part. Phys.11, 203 (1983). [2]J.K.Jewell,L.A.Riley,P.D.Cottle,K.W.Kemper, T. Glasmacher, R. W. Ibbotson, H. Scheit, M. Chromik, Y. Blumenfeld, S. E. Hirzebruch, F. Mar´ echal, and T. Suomij¨ arvi, Phys. Lett.B454, 181 (1999). [3] E. Khan, Y. Blumenfeld, N. V. Giai, T. Suomij¨ arvi, N. Alamanos, F. Auger, G. Col` o, N. Frascaria, A. Gillibert, T. Glasmacher, M. Godwin, K. W. Kemper, V. Lapoux, I. Lhenry, F. Mar´ echal, D. J. Morrissey, A. Musumarra, N. A. Orr, S. Ottini-Hustache, P. Piattelli, E. C. Pollacco, P. Roussel-Chomaz, J. C. Roynette, D. Santonocito, J. E. Sauvestre, J. A. Scarpaci, and C. Volpe, Phys. Lett.B490, 45 (2000). [4] P. D. Cottle, Nucl. Phys.A682, 124c (2001). [5] E. Becheva, Y. Blumenfeld, E. Khan, D. Beaumel, J. M. Daugas, F. Delaunay, Ch.-E. Demonchy, A. Drouart, M. Fallot, A. Gillibert, L. Giot, M. Grasso, N. Keeley, K. W. Kemper, D. T. Khoa, V. Lapoux, V. Lima, A. Musumarra, L. Nalpas, E. C. Pollacco, O. Roig, P. Roussel-Chomaz, J. E. Sauvestre, J. A. Scarpaci, F. Skaza, and H. S. Than, Phys. Rev. Lett.96, 012501 (2006). [6] N. Iwasa, T. Motobayashi, S. Bishop, Z. Elekes, J. Gibelin, M. Hosoi, K. Ieki, K. Ishikawa, H. Iwasaki, S. Kawai, S. Kubono, K. Kurita, M. Kurokawa, N. Matsui, T. Minemura, H. Morikawa, T. Nakamura, M. Niikura, M. Notani, S. Ota, A. Saito, H. Sakurai, S. Shimoura, K. Sugawara, T. Sugimoto, H. Suzuki, T. Suzuki, I. Tanihata, E. Takeshita, T. Teranishi, Y. Togano, K. Yamada, K. Yamaguchi, and Y. Yanagisawa, Phys. Rev. C 78, 024306 (2008). [7] A. M. Lane, Phys. Rev. Lett.8, 171 (1962). [8] P. Grabmayr, J. Rapaport, and R. W. Finlay, Nucl. Phys.A350, 167 (1980). [9] D.T.Khoa,Phys.Rev.C68, 011601(R) (2003). [10] R. W. Finlay, J. Rapaport, V. R. Brown, V. A. Madsen, and J. R. Comfort, Phys. Lett.B84, 169 (1979). [11] J. R. Beene, D. J. Horen, and G. R. Satchler, Phys. Lett.B344, 67 (1995); Nucl. Phys.A596, 137 (1996). [12] D. T. Khoa and G. R. Satchler, Nucl. Phys.A668, 3 (2000). [13] D. T. Khoa, Eur. Phys. J. Special Topics150, 31 (2007). [14] D. T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56, 954 (1997). [15] D. T. Khoa, W. von Oertzen, and A. A. Ogloblin, Nucl. Phys. A602, 98 (1996). [16] D. T. Khoa and H. S. Than, Phys. Rev. C71, 044601 (2005). [17] D. T. Khoa, H. S. Than, and D. C. Cuong, Phys. Rev. C 76, 014603 (2007). [18] J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C16,80 (1977). [19] A. Bohr and B. R. Mottelson, Nuclear Structure(W. A. Benjamin, Inc., New York, 1975), Vol. 2. [20] E. Khan, N. Sandulescu, M. Grasso, and N. V. Giai, Phys. Rev. C66, 024309 (2002). [21] D. Gupta, E. Khan, and Y. Blumenfeld, Nucl. Phys.A773, 230 (2006). [22] M. Grasso, N. Sandulescu, N. Van Giai, and R. J. Liotta, Phys. Rev. C64, 064321 (2001). [23] D. T. Khoa, E. Khan, G. Col` o, and N. V. Giai, Nucl. Phys.A706, 61 (2002). [24] W. G. Love, Nucl. Phys.A312, 160 (1978). [25] K. Amos, P. J. Dortmans, S. Karataglidis, H. V. von Geramb, and J. Raynal, Adv. Nucl. Phys.25, 275 (2001). [26] D. T. Khoa, W. von Oertzen, H. G. Bohlen, and S. Ohkubo, J. Phys. G34, R111 (2007). [27] N. Anantaraman, H. Toki, and G. F. Bertsch, Nucl. Phys.A398, 269 (1983). [28] D. T. Khoa and W. von Oertzen, Phys. Lett. B304, 8 (1993); B342, 6 (1995). [29] J. Raynal, Computing as a Language of Physics(IAEA, Vienna, 1972), p. 75; J. Raynal, coupled-channel codeECIS97 (unpublished). [30] J. L. Escudie, R. Lombard, M. Pignanelli, F. Resmini, and A. Tarrats, Phys. Rev. C10, 1645 (1974). [31] J. Kelly, W. Bertozzi, T. N. Buti, J. M. Finn, F. W. Hersman, M. V. Hynes, C. Hyde-Wright, B. E. Norum, A. D. Bacher, G. T. Emery, C. C. Foster, W. P. Jones, D. W. Miller, B. L. Berman, J.A.Carr, and F.Petrovich,Phys.Lett.B169, 157 (1986). [32] S. J. Seestrom-Morris, D. Dehnhard, M. A. Franey, D. B. Holtkamp, C. L. Blilie, C. L. Morris, J. D. Zumbro, and H. T. Fortune, Phys. Rev. C37, 2057 (1988). [33] A. M. Bernstein, V. R. Brown, and V. A. Madsen, Phys. Rev. Lett.42, 425 (1979). [34] S. Raman, C. W. Nestor Jr., and P. Tikkanen, At. Data Nucl. Data Tables78, 1 (2001). [35] R. H. Spear, At. Data Nucl. Data Tables42, 55 (1989). [36] A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231 (2003). [37] E. Khan, V. Lapoux, N. Alamanos, and Y. Blumenfeld, Phys. Rev. C69, 031303(R) (2004). [38] S. Karataglidis, Y. J. Kimb, and K. Amos, Nucl. Phys.A793, 40 (2007). [39] D. T. Khoa, H. G. Bohlen, W. von Oertzen, G. Bartnitzky, A. Blazevic, F. Nuoffer, B. Gebauer, W. Mittig, and P. RousselChomaz, Nucl. Phys. A759, 3 (2005). [40] A. Obertelli, S. Peru, J.-P. Delaroche, A. Gillibert, M. Girod, and H. Goutte, Phys. Rev. C71, 024304 (2005). [41] N. Frank, T. Baumann, D. Bazin, B. A. Brown, J. Brown, P. A. DeYoung, J. E. Finck, A. Gade, J. Hinnefeld, R. Howes, J. L. Lecouey, B. Luther, W. A. Peters, H. Scheit, A. Schiller, M. Thoennessen, and J. Tostevin, Nucl. Phys. A813, 199 (2008). [42] C. R. Hoffman, T. Baumann, D. Bazin, J. Brown, G. Christian, D. H. Denby, P. A. DeYoung, J. E. Finck, N. Frank, J. Hinnefeld, S. Mosby, W. A. Peters, W. F. Rogers, A. Schiller, A. Spyrou, M. J. Scott, S. L. Tabor, M. Thoennessen, and P. Voss, Phys. Lett. B 672, 17 (2009). [43] R. Kanungo, I. Tanihata, and A. Ozawa, Phys. Lett. B528, 58 (2002). APS publications USA |