A Genus - Degree formula for Fano variety of linear subspaces on complete intersections
The goal of this paper is to study the genus and degree of the Fano variety of linear subspaces on a complete intersection in a complex projective space. Suppose that the expected dimension of the Fano variety is one, we propose and prove a genus - degree formula.
Đã lưu trong:
Những tác giả chính: | Đặng, Tuấn Hiệp, Nguyen Chanh Tu, Nguyen Thi Mai Van |
---|---|
Formáid: | Journal article |
Teanga: | English |
Foilsithe: |
Quy Nhon University
2024
|
Ábhair: | |
Rochtain Ar Líne: | https://scholar.dlu.edu.vn/handle/123456789/3428 |
Clibeanna: |
Cuir Clib Leis
Gan Chlibeanna, Bí ar an gcéad duine leis an taifead seo a chlibeáil!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Míreanna Comhchosúla
-
A generalization of the Delta-genus of quasi-polarized varieties /
le: Fukuma, Yoshiaki. -
On the degree of Fano schemes of linear subspaces on hypersurfaces
le: Đặng, Tuấn Hiệp
Foilsithe: (2023) -
Global smoothing of singular weak Fano 3-folds /
le: Minagawa, Tatsuhiro. -
A characterization for the degree of Fano varieties
le: Đặng, Tuấn Hiệp, et al.
Foilsithe: (2023) -
Degree prime graph /
le: Sattanathan, M.