A Genus - Degree formula for Fano variety of linear subspaces on complete intersections
The goal of this paper is to study the genus and degree of the Fano variety of linear subspaces on a complete intersection in a complex projective space. Suppose that the expected dimension of the Fano variety is one, we propose and prove a genus - degree formula.
שמור ב:
Những tác giả chính: | Đặng, Tuấn Hiệp, Nguyen Chanh Tu, Nguyen Thi Mai Van |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Quy Nhon University
2024
|
נושאים: | |
גישה מקוונת: | https://scholar.dlu.edu.vn/handle/123456789/3428 |
תגים: |
הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
פריטים דומים
-
A generalization of the Delta-genus of quasi-polarized varieties /
מאת: Fukuma, Yoshiaki. -
On the degree of Fano schemes of linear subspaces on hypersurfaces
מאת: Đặng, Tuấn Hiệp
יצא לאור: (2023) -
Global smoothing of singular weak Fano 3-folds /
מאת: Minagawa, Tatsuhiro. -
A characterization for the degree of Fano varieties
מאת: Đặng, Tuấn Hiệp, et al.
יצא לאור: (2023) -
Degree prime graph /
מאת: Sattanathan, M.