A Genus - Degree formula for Fano variety of linear subspaces on complete intersections
The goal of this paper is to study the genus and degree of the Fano variety of linear subspaces on a complete intersection in a complex projective space. Suppose that the expected dimension of the Fano variety is one, we propose and prove a genus - degree formula.
Na minha lista:
Principais autores: | Đặng, Tuấn Hiệp, Nguyen Chanh Tu, Nguyen Thi Mai Van |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Quy Nhon University
2024
|
Assuntos: | |
Acesso em linha: | https://scholar.dlu.edu.vn/handle/123456789/3428 |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Registros relacionados
-
A generalization of the Delta-genus of quasi-polarized varieties /
por: Fukuma, Yoshiaki. -
On the degree of Fano schemes of linear subspaces on hypersurfaces
por: Đặng, Tuấn Hiệp
Publicado em: (2023) -
Global smoothing of singular weak Fano 3-folds /
por: Minagawa, Tatsuhiro. -
A characterization for the degree of Fano varieties
por: Đặng, Tuấn Hiệp, et al.
Publicado em: (2023) -
Degree prime graph /
por: Sattanathan, M.