A Genus - Degree formula for Fano variety of linear subspaces on complete intersections
The goal of this paper is to study the genus and degree of the Fano variety of linear subspaces on a complete intersection in a complex projective space. Suppose that the expected dimension of the Fano variety is one, we propose and prove a genus - degree formula.
Сохранить в:
Главные авторы: | Đặng, Tuấn Hiệp, Nguyen Chanh Tu, Nguyen Thi Mai Van |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Quy Nhon University
2024
|
Предметы: | |
Online-ссылка: | https://scholar.dlu.edu.vn/handle/123456789/3428 |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Схожие документы
-
A generalization of the Delta-genus of quasi-polarized varieties /
по: Fukuma, Yoshiaki. -
On the degree of Fano schemes of linear subspaces on hypersurfaces
по: Đặng, Tuấn Hiệp
Опубликовано: (2023) -
Global smoothing of singular weak Fano 3-folds /
по: Minagawa, Tatsuhiro. -
A characterization for the degree of Fano varieties
по: Đặng, Tuấn Hiệp, et al.
Опубликовано: (2023) -
Degree prime graph /
по: Sattanathan, M.