"Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients”
Background Congenital ichthyosis (CI) is a collective group of rare hereditary skin disorders. Patients present with epidermal scaling, fissuring, chronic inflammation, and increased susceptibility to infections. Recently, there is increased interest in the skin microbiome; therefore, we hypothesi...
Đã lưu trong:
Tác giả chính: | |
---|---|
Định dạng: | Research article |
Ngôn ngữ: | English |
Được phát hành: |
2024
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3435 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3435 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
Background Congenital ichthyosis (CI) is a collective group of rare hereditary skin disorders. Patients present
with epidermal scaling, fissuring, chronic inflammation, and increased susceptibility to infections. Recently, there
is increased interest in the skin microbiome; therefore, we hypothesized that CI patients likely exhibit an abnormal profile of epidermal microbes because of their various underlying skin barrier defects. Among recruited individuals
of Southeast Asian ethnicity, we performed skin meta‐genomics (i.e., whole‐exome sequencing to capture the entire multi‐kingdom profile, including fungi, protists, archaea, bacteria, and viruses), comparing 36 CI patients (representing seven subtypes) with that of 15 CI age‐and gender‐matched controls who had no family history of CI.
Results This case–control study revealed 20 novel and 31 recurrent pathogenic variants. Microbiome meta‐analysis showed distinct microbial populations, decreases in commensal microbiota, and higher colonization by pathogenic species associated with CI; these were correlated with increased production of inflammatory cytokines and Th17‐ and JAK/STAT‐signaling pathways in peripheral blood mononuclear cells. In the wounds of CI patients, we identified specific changes in microbiota and alterations in inflammatory pathways, which are likely responsible for impaired wound healing.
Conclusions Together, this research enhances our understanding of the microbiological, immunological, and molec‐ ular properties of CI and should provide critical information for improving therapeutic management of CI patients.
Keywords Cytokine signaling, Genetic mutation, Immune system activation and profiling, Stem cell inflammatory memory, Sepsis, Microbial infection and dysbiosis, Wound healing, Dermatologic diseases, Scaling and erythema, Physiologic protein mutations |
format |
Research article |
author |
Nguyễn, Thị Huỳnh Nga |
spellingShingle |
Nguyễn, Thị Huỳnh Nga "Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients” |
author_facet |
Nguyễn, Thị Huỳnh Nga |
author_sort |
Nguyễn, Thị Huỳnh Nga |
title |
"Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients” |
title_short |
"Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients” |
title_full |
"Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients” |
title_fullStr |
"Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients” |
title_full_unstemmed |
"Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients” |
title_sort |
"altered skin microbiome, inflammation, and jak/stat signaling in southeast asian ichthyosis patients” |
publishDate |
2024 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3435 |
_version_ |
1798257036161449984 |
spelling |
oai:scholar.dlu.edu.vn:123456789-34352024-04-19T23:47:42Z "Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients” Nguyễn, Thị Huỳnh Nga Background Congenital ichthyosis (CI) is a collective group of rare hereditary skin disorders. Patients present with epidermal scaling, fissuring, chronic inflammation, and increased susceptibility to infections. Recently, there is increased interest in the skin microbiome; therefore, we hypothesized that CI patients likely exhibit an abnormal profile of epidermal microbes because of their various underlying skin barrier defects. Among recruited individuals of Southeast Asian ethnicity, we performed skin meta‐genomics (i.e., whole‐exome sequencing to capture the entire multi‐kingdom profile, including fungi, protists, archaea, bacteria, and viruses), comparing 36 CI patients (representing seven subtypes) with that of 15 CI age‐and gender‐matched controls who had no family history of CI. Results This case–control study revealed 20 novel and 31 recurrent pathogenic variants. Microbiome meta‐analysis showed distinct microbial populations, decreases in commensal microbiota, and higher colonization by pathogenic species associated with CI; these were correlated with increased production of inflammatory cytokines and Th17‐ and JAK/STAT‐signaling pathways in peripheral blood mononuclear cells. In the wounds of CI patients, we identified specific changes in microbiota and alterations in inflammatory pathways, which are likely responsible for impaired wound healing. Conclusions Together, this research enhances our understanding of the microbiological, immunological, and molec‐ ular properties of CI and should provide critical information for improving therapeutic management of CI patients. Keywords Cytokine signaling, Genetic mutation, Immune system activation and profiling, Stem cell inflammatory memory, Sepsis, Microbial infection and dysbiosis, Wound healing, Dermatologic diseases, Scaling and erythema, Physiologic protein mutations 18 2024-04-18T13:52:48Z 2024-04-18T13:52:48Z 2024-04-02 Research article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3435 10.1186/s40246-024-00603-x en Human Genomics 1473-9542 filaggrin gene mutations in adult atopic dermatitis. JAMA Dermatol. 2018;154(3):293–300. 6. Scharschmidt TC, List K, Grice EA, Szabo R, Program NCS, Renaud G, et al. Matriptase‐deficient mice exhibit ichthyotic skin with a selective shift in skin microbiota. J Invest Dermatol. 2009;129(10):2435–42. 7. Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, et al. Staph- ylococcus aureus and Staphylococcus epidermidis strain diversity underly‐ ing pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651. 8. Gonzalez ME, Schaffer JV, Orlow SJ, Gao Z, Li H, Alekseyenko AV, et al. Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic dermatitis. J Am Acad Der‐ matol. 2016;75(3):481‐93 e8. 9. Paller AS, Kong HH, Seed P, Naik S, Scharschmidt TC, Gallo RL, et al. The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):26–35. 10. Stevens ML, Gonzalez T, Schauberger E, Baatyrbek Kyzy A, Andersen H, Spagna D, et al. Simultaneous skin biome and keratinocyte genomic capture reveals microbiome differences by depth of sampling. J Allergy Clin Immunol. 2020;146(6):1442–5. 11. Dekio I, Sakamoto M, Hayashi H, Amagai M, Suematsu M, Benno Y. Characterization of skin microbiota in patients with atopic dermatitis and in normal subjects using 16S rRNA gene‐based comprehensive analysis. J Med Microbiol. 2007;56(Pt 12):1675–83. 12. Kong HH, Segre JA. Skin microbiome: looking back to move forward. J Invest Dermatol. 2012;132(3 Pt 2):933–9. 13. Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol. 2006;44(8):2933–41. 14. Fahlen A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304(1):15–22. 15. Statnikov A, Alekseyenko AV, Li Z, Henaff M, Perez‐Perez GI, Blaser MJ, et al. Microbiomic signatures of psoriasis: feasibility and methodology comparison. Sci Rep. 2013;3:2620. 16. Clowry J, Irvine AD, McLoughlin RM. Next‐generation anti‐Staphylococcus aureus vaccines: a potential new therapeutic option for atopic dermatitis? J Allergy Clin Immunol. 2019;143(1):78–81. 17. de Wit J, Totte JEE, van Mierlo MMF, van Veldhuizen J, van Doorn MBA, Schuren FHJ, et al. Endolysin treatment against Staphylococcus aureus in adults with atopic dermatitis: a randomized controlled trial. J Allergy Clin Immunol. 2019;144(3):860–3. 18. Oji V, Tadini G, Akiyama M, Blanchet Bardon C, Bodemer C, Bourrat E, et al. Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Soreze 2009. J Am Acad Dermatol. 2010;63(4):607–41. 19. Paller AS, Renert‐Yuval Y, Suprun M, Esaki H, Oliva M, Huynh TN, et al. An IL‐17‐dominant immune profile is shared across the major orphan forms of ichthyosis. J Allergy Clin Immunol. 2017;139(1):152–65. 20. Malik K, He H, Huynh TN, Tran G, Mueller K, Doytcheva K, et al. Ichthyosis molecular fingerprinting shows profound T(H)17 skewing and a unique barrier genomic signature. J Allergy Clin Immunol. 2019;143(2):604–18. 21. Czarnowicki T, He H, Leonard A, Malik K, Magidi S, Rangel S, et al. The major orphan forms of ichthyosis are characterized by systemic T‐cell activation and Th‐17/Tc‐17/Th‐22/Tc‐22 polarization in blood. J Invest Dermatol. 2018;138(10):2157–67. 22. Dajnoki Z, Beke G, Mocsai G, Kapitany A, Gaspar K, Hajdu K, et al. Immune‐mediated skin inflammation is similar in severe atopic dermati‐ tis patients with or without Filaggrin Mutation. Acta Dermatol Venereol. 2016;96(5):645–50. 23. Race E, Genetics WG. The use of racial, ethnic, and ancestral categories in human genetics research. Am J Hum Genet. 2005;77(4):519–32. 24. Rawlings AV. Ethnic skin types: are there differences in skin structure and function? Int J Cosmet Sci. 2006;28(2):79–93. 25. Wan DC, Wong VW, Longaker MT, Yang GP, Wei F‐C. Moisturizing different racial skin types. J Clin Aesthet Dermatol. 2014;7(6):25. 26. Brunner PM, Guttman‐Yassky E. Racial differences in atopic dermatitis. Ann Allergy Asthma Immunol. 2019;122(5):449–55. 27. Schallreuter K, Levenig C, Berger J, Umbert J, Winkelmann R, Wegener L, et al. Severity scoring of atopic dermatitis: the SCORAD index. Dermatol‐ ogy. 1993;186(1):23–31. Received: 14 September 2023 References Accepted: 1 April 2024 1. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topo‐ graphical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2. 2. Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, et al. Human stratum corneum lipids: characterization and regional varia‐ tions. J Lipid Res. 1983;24(2):120–30. 3. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158(3):442–55. 4. Grice EA. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin Cutan Med Surg. 2014;33(2):98–103. 5. Clausen ML, Agner T, Lilje B, Edslev SM, Johannesen TB, Andersen PS. Association of disease severity with skin microbiome and Ho et al. Human Genomics (2024) 18:38 Page 23 of 23 28. DiGiovanna JJ, Robinson‐Bostom L. Ichthyosis: etiology, diagnosis, and management. Am J Clin Dermatol. 2003;4(2):81–95. 29. Tham K‐C, Lefferdink R, Duan K, Lim SS, Wong XFCC, Ibler E, et al. Distinct skin microbiome community structures in congenital ichthyosis. Br J Dermatol. 2022;187(4):557–70. 30. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Micro‐ biol. 2018;16(3):143–55. 31. Findley K, Grice EA. The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathog. 2014;10(10):e1004436. 32. Tirosh O, Conlan S, Deming C, Lee‐Lin SQ, Huang X, Program NCS, et al. Expanded skin virome in DOCK8‐deficient patients. Nat Med. 2018;24(12):1815–21. 33. Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42(4):756–66. 34. Chang HW, Yan D, Singh R, Liu J, Lu X, Ucmak D, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polariza‐ tion. Microbiome. 2018;6(1):154. 35. Almoughrabie S, Cau L, Cavagnero K, O’Neill AM, Li F, Roso‐Mares A, et al. Commensal Cutibacterium acnes induce epidermal lipid synthesis impor‐ tant for skin barrier function. Sci Adv. 2023;9(33):eadg6262. 36. Wexler HM. Bacteroides: the good, the bad, and the nitty‐gritty. Clin Microbiol Rev. 2007;20(4):593–621. 37. Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, et al. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J Invest Dermatol. 2018;138(5):1137–45. 38. Rajpopat S, Moss C, Mellerio J, Vahlquist A, Ganemo A, Hellstrom‐Pigg M, et al. Harlequin ichthyosis: a review of clinical and molecular findings in 45 cases. Arch Dermatol. 2011;147(6):681–6. 39. Bremmer SF, Hanifin JM, Simpson EL. Clinical detection of ichthyosis vulgaris in an atopic dermatitis clinic: implications for allergic respiratory disease and prognosis. J Am Acad Dermatol. 2008;59(1):72–8. 40. Kong H, Oh J, Deming C, Conlan S, Grice E, Beatson M, et al. Komarow HD; NISC Comparative Sequence Program, Murray PR, Turner ML Segre JA. Genome Res. 2012;22(5):850–9. 41. Randall G, Kraemer KH, Pugh J, Tamura D, DiGiovanna JJ, Khan SG, et al. Mortality‐associated immunological abnormalities in trichothiodystro‐ phy: correlation of reduced levels of immunoglobulin and neutrophils with poor patient survival. Br J Haematol. 2019;185(4):752–4. 42. Williams MR, Cau L, Wang Y, Kaul D, Sanford JA, Zaramela LS, et al. Interplay of staphylococcal and host proteases promotes skin barrier disruption in Netherton syndrome. Cell Rep. 2020;30(9):2923‐33 e7. 43. Larsen SB, Cowley CJ, Sajjath SM, Barrows D, Yang Y, Carroll TS, et al. Estab‐ lishment, maintenance, and recall of inflammatory memory. Cell Stem Cell. 2021;28(10):1758‐74 e8. 44. Kim M, Mikhaylov D, Rangel SM, Pavel AB, He H, Renert‐Yuval Y, et al. Transcriptomic analysis of the major orphan ichthyosis subtypes reveals shared immune and barrier signatures. J Invest Dermatol. 2022;142(9):2363‐74 e18. 45. Yogarajah J, Gouveia C, Iype J, Häfliger S, Schaller A, Nuoffer JM, et al. Efficacy and safety of secukinumab for the treatment of severe ABCA12 deficiency‐related ichthyosis in a child. Skin Health Dis. 2021;1(2):e25. 46. Luchsinger I, Knöpfel N, Theiler M, Bonnet des Claustres M, Barbieux C, Schwieger‐Briel A, et al. Secukinumab therapy for Netherton syndrome. JAMA Dermatol. 2020;156(8):907–11. 47. Gan C, King E, Orchard D. Secukinumab use in the treatment of Nether‐ ton’s syndrome. Australas J Dermatol. 2022;63:365–7. 48. Lefferdink R, Rangel SM, Chima M, Ibler E, Pavel AB, Kim H, et al. Secuki‐ numab responses vary across the spectrum of congenital ichthyosis in adults. Arch Dermatol Res. 2022;3152:305–15. 49. Adams R, Maroof A, Baker T, Lawson ADG, Oliver R, Paveley R, et al. Bimeki‐ zumab, a novel humanized IgG1 antibody that neutralizes both IL‐17A and IL‐17F. Front Immunol. 2020;11:519959. 50. Freitas E, Blauvelt A, Torres T. Bimekizumab for the treatment of psoriasis. Drugs. 2021;81(15):1751–62. 51. Enjalbert F, Dewan P, Caley MP, Jones EM, Morse MA, Kelsell DP, et al. 3D model of harlequin ichthyosis reveals inflammatory therapeutic targets. J Clin Investig. 2020;130(9):4798–810. 52. Lin DH, Nguyen C, Fleischer AB. Time to meaningful clinical response in reduction of itch in atopic dermatitis. J Dermatol Treat. 2022;33(3):1568–71. 53. Du L‐X, Zhu J‐Y, Mi W‐L. Cytokines and chemokines modulation of itch. Neuroscience. 2022;495:74–85. 54. Wollenberg A, Howell MD, Guttman‐Yassky E, Silverberg JI, Kell C, Ranade K, et al. Treatment of atopic dermatitis with tralokinumab, an anti–IL‐13 mAb. J Allergy Clin Immunol. 2019;143(1):135–41. 55. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, et al. Methicillin‐resistant S. aureus infections among patients in the emergency department. N Engl J Med. 2006;355(7):666–74. 56. Bui CB, Duong TTP, Tran VT, Pham TTT, Vu T, Chau GC, et al. A novel nonsense mutation of ERCC2 in a Vietnamese family with xeroderma pigmentosum syndrome group D. Hum Genome Var. 2020;7:2. 57. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2018;35(11):1978–80. 58. Methé BA, Nelson KE, Pop M, Creasy HH, Giglio MG, Huttenhower C, Gevers D, Petrosino JF, Abubucker S, Badger JH, et al. A framework for human microbiome research. Nature. 2012;486(7402):215–21. 59. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high‐throughput community sequenc‐ ing data. Nat Methods. 2010;7(5):335–6. 60. Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. Bio‐ Data Min. 2015;8(1):1. 61. Fursov N, Gates IV, Panavas T, Giles‐Komar J, Powers G. Development and utilization of activated STAT3 detection assays for screening a library of secreted proteins. Assay Drug Dev Technol. 2011;9(4):420–9. 62. Davies R, Vogelsang P, Jonsson R, Appel S. An optimized multiplex flow cytometry protocol for the analysis of intracellular signaling in peripheral blood mononuclear cells. J Immunol Methods. 2016;436:58–63. 63. Le S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25(1):1–18. 64. Wickham H. Data analysis. Use R. Cham: Springer International Publishing; 2016. p. 189–201. |