Effects of Si4+/Al3+ molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and optical properties of Bin+/Ybm+, Bin+/Er3+ and Bin+/Er3+/Ybm+ (n, m = 3, 2) co-doped magnesium aluminum silicate glass

In this paper, we investigate and report the effects of Si4+/Al3+ (SiO2/Al2O3) molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and upconversion (UC)-, visible (VIS)- emission spectra, direct optical bandgaps (DOB), indirect optical bandgaps (IOB) of Bin+/Ybm+, Er3+/Bin+,...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Nguyễn, Đình Trung
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Optical Materials 2024
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/3537
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-3537
record_format dspace
spelling oai:scholar.dlu.edu.vn:123456789-35372024-08-09T13:04:59Z Effects of Si4+/Al3+ molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and optical properties of Bin+/Ybm+, Bin+/Er3+ and Bin+/Er3+/Ybm+ (n, m = 3, 2) co-doped magnesium aluminum silicate glass Nguyễn, Đình Trung Effects of Si4+/Al3+ co-doped magnesium aluminum silicate In this paper, we investigate and report the effects of Si4+/Al3+ (SiO2/Al2O3) molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and upconversion (UC)-, visible (VIS)- emission spectra, direct optical bandgaps (DOB), indirect optical bandgaps (IOB) of Bin+/Ybm+, Er3+/Bin+, and Er3+/Bin+/Ybm+ (n, m = 3, 2) co doped SiO2–Al2O3–MgO–TiO2 (SAMT) magnesium aluminum silicate glasses. The valence states of the bismuth (Bi), and Ytterbium (Yb) elements in the raw materials mixture existing in the SAMT glass were determined using X-ray photoelectron spectroscopy (XPS) spectra analysis. With the increase of Al3+ molar concentration from 16 mol. % up to 20, 24, 28 and 32 mol. % corresponding to the Si4+/Al3+ (SiO2/Al2O3) molar concentration ratio of 3.4, 2.5, 1.9, 1.5, and 1.2, the self-reduction process of Yb3+ to Yb2+ ions was enhanced and thus significantly affected the DOB, IOB, the intensities of UC-, VIS- emission spectra of Bin+/Ybm+, Bin+/Er3+, and Bin+/Er3+/ Ybm+ (n = 2, 3) co-doped SAMT glasses under excitation of 473 nm, 808 laser diode (LD) and 980 nm LD. In addition, the CIE 1931(x, y) color coordinates for VIS- and UC- emissions spectra of Bin+/Ybm+, Bin+/Er3+ (n = 2, 3) co-doped SAMT under excitation of 473 nm and 808 nm LD are also calculated and determined in the CIE 1931(x, y) chromaticity diagram 2024-08-01T01:22:19Z 2024-08-01T01:22:19Z 2024-07-22 2024-05-23 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter Khoa học kỹ thuật và công nghệ https://scholar.dlu.edu.vn/handle/123456789/3537 10.1016/j.optmat.2024.115876 en Optical Materials ELSEVIER
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Effects of Si4+/Al3+ co-doped magnesium aluminum silicate
spellingShingle Effects of Si4+/Al3+ co-doped magnesium aluminum silicate
Nguyễn, Đình Trung
Effects of Si4+/Al3+ molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and optical properties of Bin+/Ybm+, Bin+/Er3+ and Bin+/Er3+/Ybm+ (n, m = 3, 2) co-doped magnesium aluminum silicate glass
description In this paper, we investigate and report the effects of Si4+/Al3+ (SiO2/Al2O3) molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and upconversion (UC)-, visible (VIS)- emission spectra, direct optical bandgaps (DOB), indirect optical bandgaps (IOB) of Bin+/Ybm+, Er3+/Bin+, and Er3+/Bin+/Ybm+ (n, m = 3, 2) co doped SiO2–Al2O3–MgO–TiO2 (SAMT) magnesium aluminum silicate glasses. The valence states of the bismuth (Bi), and Ytterbium (Yb) elements in the raw materials mixture existing in the SAMT glass were determined using X-ray photoelectron spectroscopy (XPS) spectra analysis. With the increase of Al3+ molar concentration from 16 mol. % up to 20, 24, 28 and 32 mol. % corresponding to the Si4+/Al3+ (SiO2/Al2O3) molar concentration ratio of 3.4, 2.5, 1.9, 1.5, and 1.2, the self-reduction process of Yb3+ to Yb2+ ions was enhanced and thus significantly affected the DOB, IOB, the intensities of UC-, VIS- emission spectra of Bin+/Ybm+, Bin+/Er3+, and Bin+/Er3+/ Ybm+ (n = 2, 3) co-doped SAMT glasses under excitation of 473 nm, 808 laser diode (LD) and 980 nm LD. In addition, the CIE 1931(x, y) color coordinates for VIS- and UC- emissions spectra of Bin+/Ybm+, Bin+/Er3+ (n = 2, 3) co-doped SAMT under excitation of 473 nm and 808 nm LD are also calculated and determined in the CIE 1931(x, y) chromaticity diagram
format Journal article
author Nguyễn, Đình Trung
author_facet Nguyễn, Đình Trung
author_sort Nguyễn, Đình Trung
title Effects of Si4+/Al3+ molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and optical properties of Bin+/Ybm+, Bin+/Er3+ and Bin+/Er3+/Ybm+ (n, m = 3, 2) co-doped magnesium aluminum silicate glass
title_short Effects of Si4+/Al3+ molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and optical properties of Bin+/Ybm+, Bin+/Er3+ and Bin+/Er3+/Ybm+ (n, m = 3, 2) co-doped magnesium aluminum silicate glass
title_full Effects of Si4+/Al3+ molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and optical properties of Bin+/Ybm+, Bin+/Er3+ and Bin+/Er3+/Ybm+ (n, m = 3, 2) co-doped magnesium aluminum silicate glass
title_fullStr Effects of Si4+/Al3+ molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and optical properties of Bin+/Ybm+, Bin+/Er3+ and Bin+/Er3+/Ybm+ (n, m = 3, 2) co-doped magnesium aluminum silicate glass
title_full_unstemmed Effects of Si4+/Al3+ molar concentration ratio on the self-reduction process of Yb3+ to Yb2+ ions and optical properties of Bin+/Ybm+, Bin+/Er3+ and Bin+/Er3+/Ybm+ (n, m = 3, 2) co-doped magnesium aluminum silicate glass
title_sort effects of si4+/al3+ molar concentration ratio on the self-reduction process of yb3+ to yb2+ ions and optical properties of bin+/ybm+, bin+/er3+ and bin+/er3+/ybm+ (n, m = 3, 2) co-doped magnesium aluminum silicate glass
publisher Optical Materials
publishDate 2024
url https://scholar.dlu.edu.vn/handle/123456789/3537
_version_ 1813142625107050496