Thiết kế chế tạo thiết bị phát hiện và cảnh báo nguồn phóng xạ ngoài quản lý

Using the pulse shape discrimination (PSD) method to identify neutron/gamma radiation types, so that a single detector can be used to detect both neutron and gamma radiation simultaneously.

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Phan, Văn Chuân, Trần, Hữu Duy, Nguyễn, Năng Hải, Lê, Văn Tùng, Nguyễn, Thị Phúc, Nguyễn, Xuân Hải
Định dạng: Report
Ngôn ngữ:Vietnamese
Được phát hành: 2024
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/3542
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-3542
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language Vietnamese
description Using the pulse shape discrimination (PSD) method to identify neutron/gamma radiation types, so that a single detector can be used to detect both neutron and gamma radiation simultaneously.
format Report
author Phan, Văn Chuân
Trần, Hữu Duy
Nguyễn, Năng Hải
Lê, Văn Tùng
Nguyễn, Thị Phúc
Nguyễn, Xuân Hải
spellingShingle Phan, Văn Chuân
Trần, Hữu Duy
Nguyễn, Năng Hải
Lê, Văn Tùng
Nguyễn, Thị Phúc
Nguyễn, Xuân Hải
Thiết kế chế tạo thiết bị phát hiện và cảnh báo nguồn phóng xạ ngoài quản lý
author_facet Phan, Văn Chuân
Trần, Hữu Duy
Nguyễn, Năng Hải
Lê, Văn Tùng
Nguyễn, Thị Phúc
Nguyễn, Xuân Hải
author_sort Phan, Văn Chuân
title Thiết kế chế tạo thiết bị phát hiện và cảnh báo nguồn phóng xạ ngoài quản lý
title_short Thiết kế chế tạo thiết bị phát hiện và cảnh báo nguồn phóng xạ ngoài quản lý
title_full Thiết kế chế tạo thiết bị phát hiện và cảnh báo nguồn phóng xạ ngoài quản lý
title_fullStr Thiết kế chế tạo thiết bị phát hiện và cảnh báo nguồn phóng xạ ngoài quản lý
title_full_unstemmed Thiết kế chế tạo thiết bị phát hiện và cảnh báo nguồn phóng xạ ngoài quản lý
title_sort thiết kế chế tạo thiết bị phát hiện và cảnh báo nguồn phóng xạ ngoài quản lý
publishDate 2024
url https://scholar.dlu.edu.vn/handle/123456789/3542
_version_ 1813142626786869248
spelling oai:scholar.dlu.edu.vn:123456789-35422024-08-02T03:35:52Z Thiết kế chế tạo thiết bị phát hiện và cảnh báo nguồn phóng xạ ngoài quản lý Phan, Văn Chuân Trần, Hữu Duy Nguyễn, Năng Hải Lê, Văn Tùng Nguyễn, Thị Phúc Nguyễn, Xuân Hải Using the pulse shape discrimination (PSD) method to identify neutron/gamma radiation types, so that a single detector can be used to detect both neutron and gamma radiation simultaneously. A neutron and gamma radiation detector using EJ-276 scintillator has been developed with the following characteristics: short pulse forming time, which allows the detector to count pulses effectively in a high-activity environment; large crystal size (5.08 cm x 5.08 cm) and high sensitivity, which makes it easy to detect low-activity radioactive sources; internal counting efficiency for neutrons (Cf-252) of 19.4%; use of a compact SiPM photomultiplier instead of a photomultiplier tube, which results in lower power consumption, energy savings, and improved efficiency. The EJ-276 scintillator detector has been combined with electronic components to create a radiation detector and alarm system. The hardware design includes analog pulse processing circuits that are integrated into the detector. The 32-bit STMH7 family microcontroller operates at a frequency of 480 MHz, which allows for high-speed calculations. In addition, an A9G microcontroller is also integrated into the system to provide wireless device connectivity via a 4G SIM card and location information via the GPS system. A software program has been designed and integrated into the detector hardware to perform the main functions of the system, such as: controlling the wireless connection of the detector; setting measurement thresholds and automatically sending alerts for neutron and gamma radiation sources in the monitoring area; performing neutron/gamma radiation source identification algorithms. Or recording the pulse amplitude spectrum from a radiation source for isotope identification studies. With the features of the system achieved in this study (high sensitivity, simultaneous detection of neutrons/gamma on a single detector with high reliability, compact size, and application of IoT technology), the detector can be used for detection and warning of radiation sources, integrated use or development into environmental radiation monitoring systems, or other radiation detection applications. The results of the study also confirm the mastery in the design and manufacture of nuclear radiation measurement systems in general or measurement systems used in radiation safety assurance, monitoring, and management of radiation sources. 2024-08-02T03:35:43Z 2024-08-02T03:35:43Z 2024-01 2022-01-01 2023-12 Report Đề tài cấp Bộ và tương đương Khoa học kỹ thuật và công nghệ https://scholar.dlu.edu.vn/handle/123456789/3542 B2022-DLA-02 vi [1] INTERNATIONAL ATOMIC ENERGY AGENCY, “Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries,” IAEA Safety Standards, No. SSG-17, 2012. [2] LUBENAU, J.O., YUSKO, J.G., Radioactive materials in recycled metals: an update, Health Phys. 74 3 (1998). [3] IAEA, “Control of orphan sources and other radioactive material in scrap metal,”retrieved on http://www-ns.iaea.org/tech-areas/radiationsafety/orphan-sources-scrap-metal.asp [4] LUBENAU, J.O., YUSKO, J.G., Radioactive materials in recycled metals: an update, Health Phys. 74 3 (1998). [5] Harikumar, M., Thakur, V. M., Verma, A. K., & Krishnamachari, G. (2005). Detection of unauthorized movement of radioactive sources in the public domain for regaining control on orphan sources-Systems and feasibility. Security of Radioactive Sources, 259. [6] Cester, D., Nebbia, G., Stevanato, L., Pino, F., Sajo-Bohus, L., & Viesti, G. (2013). A compact neutron–gamma spectrometer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 719, 81-84. [7] Shin, T. H., Di Fulvio, A., Jordan, T., Chichester, D. L., Clarke, S. D., & Pozzi, S. A. (2016). Fast neutron multiplicity counter based on stilbene and EJ-309 scintillators for nuclear non-destructive assay. In Proc. INMM 57th Annu. Meet. (pp. 1-9). [8] G. F. Knoll, Radiation Detection and Measurement, John Wiley & Sons (2010). [9] Connolly, E. L., & Martin, P. G. (2021). Current and prospective radiation detection systems, screening infrastructure and interpretive algorithms for the non-intrusive screening of shipping container cargo: a review. Journal of Nuclear Engineering, 2(3), 246-280. [10] Guzman-Garcia, K. A., Vega-Carrillo, H. R., Gallego, E., Gonzalez-Gonzalez, J. A., Lorente, A., & Ibañez-Fernandez, S. (2017). 10B+ ZnS (Ag) as an alternative to 3He-based detectors for Radiation Portal Monitors. In EPJ Web of Conferences (Vol. 153, p. 07008). EDP Sciences. [11] Aryaeinejad, R., Reber, E. L., & Spencer, D. F. (2002). Development of a handheld device for simultaneous monitoring of fast neutrons and gamma rays. IEEE Transactions on Nuclear Science, 49(4), 1909-1913. [12] SRM-910 Radiation Datasheet, (2019), http://www.inspection-kits.com/ SAIC-EXPLORANIUM%C2%AE-SRM-910-Radiation-Monitor-s-512-655.html [13] PM1610 POLIMASTER Datasheet, (2016), https://en.polimaster.com/catalog/personal-dosimeters/personal-dosimeter-pm1610/ [14] Phan Van Chuan, Nguyen Duc Hoa, Nguyen Xuan Hai, Nguyen Ngoc Anh, Nguyen Nhi Dien, Pham Dinh Khang (2018), “A scintillation detector configuration for pulse shape analysis”, Nuclear Engineering and Technology, 50, pp. 1426-1432. [15] Phan Van Chuan, Nguyen Xuan Hai (2018), “Evaluating four neutron-gamma discrimination methods with EJ-301scintillator”, Analog Integrated Circuits and Signal Processing,Volume 98, Issue 1, pp 75–84. [16] Van Phan, C., Nguyen, H. D., Nguyen, H. X., & Nguyen, T. D. (2018). Manufacture of a fast neutron detector using EJ-301 liquid scintillator. Science and Technology Development Journal-Natural Sciences, 2(2), 76-81. [17] Nguyen, V. S., Dang, Q. T., & Nguyen, T. B. M. (2015). Research on development of multi-channel analyzer used for monitoring and warning environmental radiation equipment. [18] D. T. Hung et al., "A Confident Configuration for an Environmental Radiation Monitoring System," in IEEE Transactions on Nuclear Science, vol. 67, no. 10, pp. 2224-2230, Oct. 2020, doi: 10.1109/TNS.2020.3019587. [19] Kharisov Boris Ildusovich, Kharissova Oxana Vasilievna, Méndez Ubaldo Ortiz, (2016), Radiation synthesis of materials and compounds. CRC Press. [20] "Neutron Detectors: Alternatives to Using Helium-3", (2011), In TECHNOLOGY ASSESSMENT. [21] Zeitelhack Karl, (2012), "Search for alternative techniques to helium-3 based detectors for neutron scattering applications", Neutron News, 23(4), 10–13. [22] Shalev S., Fishelson Z., Cuttler J. M., (1969), "The wall effect in 3He counters", Nuclear Instruments and Methods, 71(3), 292–296. [23] Mazed Dahmane, Mameri S., Ciolini Riccardo, (2012), "Design parameters and technology optimization of 3He-filled proportional counters for thermal neutron detection and spectrometry applications", Radiation Measurements, 47(8), 577–587. [24] Weyrauch M., Casnati A., Schillebeeckx P., Clapham M., (1998), "Use of 4He-filled proportional counters as neutron spectrometers", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 403(2–3), 442–454. [25] H. Ing, T. Cli!ord, T. McLean, W. Webb, T. Cousins J. Dhermain, (1997), "No Title", Radiation Protection Dosimetry, 70, 273. [26] Rose A., (1967), "Sputtered boron films on silicon surface barrier detectors", Nuclear Instruments and Methods, 52(1), 166–170. [27] Hashemi-Nezhad S. R., Peak L. S., (1995), "Background neutron flux determination at a depth of 3200 mwe underground", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 357(2–3), 524–534. [28] Vradii, A. G., Krapivin, M. I., Maslova, L. V., Matveev, O. A., Khusainov, A. K., & Shashurin, V. K. (1977). Possibilities of recording thermal neutrons with cadmium telluride detectors. Soviet Atomic Energy, 42(1), 64-66 [29] McGregor, S. M. (1999). Solar cell based on electrodeposited CdS and CdTe films. Sheffield Hallam University (United Kingdom). [30] Beyerle, A., Hull, K., Markakis, J., Schnepple, W., & Van Den Berg, L. (1982). Characterization of Single Crystal Mercuric Iodide (HgI2) Using Thick Detector Structures. MRS Online Proceedings Library (OPL), 16, 191. [31] Bell, N. A., March, L. A., & Nowell, I. W. (1991). Mercury (II) halide complexes of tertiary phosphines Part XV. Crystal structure of the mercury (II) halide-phosphine complex of unusual stoichiometry,(Me3P) 2 (HgI2) 3. Inorganica chimica acta, 179(1), 73-76. [32] Pospisil Stanislav, Sopko Bruno, Havrankova Eva, Janout Zdenek, Konicek Jan, Macha Ivan, Pavlu Jaroslav, (1993), "Si diode as a small detector of slow neutrons", Radiation Protection Dosimetry, 46(2), 115–118 [33] Kaschuck Y., Esposito B., (2005), "Neutron/γ-ray digital pulse shape discrimination with organic scintillators", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 551(2–3), 420–428. [34] McGregor D. S., Bellinger S. L., Fronk R. G., Henson L., Huddleston D., Ochs T., … Taylor R. D., (2015), "Development of compact high efficiency microstructured semiconductor neutron detectors", Radiation Physics and Chemistry, 116, 32–37. doi:10.1016/j.radphyschem.2015.05.025 [35] Masuda A., Matsumoto T., Harano H., Tanimura Y., Shikaze Y., Yoshitomi H., … Unno Y., (2015), "Time-of-Flight Measurements for Low-Energy Components of 45-MeV Quasi-Monoenergetic High-Energy Neutron Field from 7Li(p,n) Reaction", IEEE Transactions on Nuclear Science, 62(3), 1295–1300. [36] Ochs Taylor R., Bellinger Steven L., Fronk Ryan G., Henson Luke C., Huddleston David E., Lyric Zoairia I., … McGregor Douglas S., (2017), "Present Status of the Microstructured Semiconductor Neutron Detector (MSND)-Based Direct Helium-3 Replacement (HeRep)", IEEE Transactions on Nuclear Science. [37] Černý J., Doležal Z., Ivanov M. P., Kuzmin E. S., Švejda J., Wilhelm I., (2004), "Study of neutron response and n-γ discrimination by charge comparison method for small liquid scintillation detector", Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 527(3), 512–518. doi:10.1016/j.nima.2004.03.179 [38] Jastaniah S. D., Sellin P. J., (2004), "Digital techniques for n/γ pulse shape discrimination and capture-gated neutron spectroscopy using liquid scintillators", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 517(1–3), 202–210. [39] Singkarat S., Boonyawan D., Hoyes G. G., Tippawan U., Vilaithong T., Garis N. S., Kobus H., (1997), "Development of an encapsulated scintillating fiber detector as a 14-MeV neutron sensor", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 384(2–3), 463–470. [40] Bayat E., Divani-Vais N., Firoozabadi M. M., Ghal-Eh N., (2012), "A comparative study on neutron-gamma discrimination with NE213 and UGLLT scintillators using zero-crossing method", Radiation Physics and Chemistry, 81(3), 217–220. doi:10.1016/j.radphyschem.2011.10.016 [41] Technology Eljen, (2016), "EJ-301, EJ-309 Datasheet", Eljen Technology. [42] Payne Christopher, Sellin Paul J., Ellis Mark, Duroe Kirk, Jones Ashley, Joyce Malcolm, … Speller Robert, (2015), "Neutron / gamma pulse shape discrimination in EJ-299-34 at high flux". [43] Amiri Moslem, (2012), "Discrimination of neutron and photon signals". Masarykova univerzita, Fakulta informatiky. [44] Sosa C. S., Flaska M., Pozzi S. A., (2016), "Comparison of analog and digital pulse-shape-discrimination systems", Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 826(August), 72–79. doi:10.1016/j.nima.2016.03.088 [45] Yamazaki Atsushi, Watanabe Kenichi, Uritani Akira, Iguchi Tetsuo, Kawaguchi Noriaki, Yanagida Takayuki, … Yoshikawa Akira, (2011), "Neutrongamma discrimination based on pulse shape discrimination in a Ce:LiCaAlF6scintillator", Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 652(1), 435–438. doi:10.1016/j.nima.2011.02.064 [46] F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, and C. Piemonte, "Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 912, pp. 309-314, 2018 [47] A. A. Wagadarikar, S. Katz, A. Ivan, and S. Dolinsky, "Performance of low afterpulsing probability multi-pixel photon counters for time-of-flight positron emission tomography," in 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), 2013, pp. 1-5. [48] P. Slawomir Piatek. (2016 ). What is an SiPM and how does it work? Available: https://hub.hamamatsu.com/jp/en/technical-note/how-sipm-works/index.html [49] P. Slawomir Piatek. (2016 ). What is an SiPM and how does it work? Available: https://hub.hamamatsu.com/jp/en/technical-note/how-sipm-works/index.html [50] F. Acerbi, A. Ferri, A. Gola, M. Cazzanelli, L. Pavesi, N. Zorzi, et al., "Characterization of single-photon time resolution: from single SPAD to silicon photomultiplier," IEEE Transactions on Nuclear Science, vol. 61, pp. 2678-2686, 2014. [51] D. Marano, G. Bonanno, M. Belluso, S. Billotta, A. Grillo, S. Garozzo, et al., "Improved SPICE electrical model of silicon photomultipliers," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 726, pp. 1-7, 2013. [52] M. G. Bisogni, A. Del Guerra, and N. Belcari, "Medical applications of silicon photomultipliers," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 926, pp. 118-128, 2019. [53] M. Conti and B. Bendriem, "The new opportunities for high time resolution clinical TOF PET," Clinical and Translational Imaging, vol. 7, pp. 139-147, 2019. [54] S. Surti and J. S. Karp, "Advances in time-of-flight PET," Phys Med, vol. 32, pp. 12-22, Jan 2016. [55] A. A. Wagadarikar, S. Katz, A. Ivan, and S. Dolinsky, "Performance of low afterpulsing probability multi-pixel photon counters for time-of-flight positron emission tomography," in 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), 2013, pp. 1-5. [56] Protection, R. (2007). ICRP publication 103. Ann ICRP, 37(2.4), 2 [57] Peurrung A. J., (2000), "Recent developments in neutron detection", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 443(2), 400–415. doi:10.1016/S0168-9002(99)01165-1 [58] Application Note AFBR-S4NxxC013-44P163 Brief Introduction to Silicon Photomultipliers, Broadcom, 2020. [59] AFBR-S4N44P163 4×4 NUV-HD Silicon Photo Multiplier Array DataSheet, Broadcom, 2021. [60] Texas Instruments DataSheet TLV3501, TLV3502, Texas Instruments, (2016). [61] Texas Instruments DataSheet SN54HCT02, SN74HCT02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES, Texas Instruments, (2003). [62] Nakhostin, M., and P. M. Walker. "Application of digital zero-crossing technique for neutron–gamma discrimination in liquid organic scintillation detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 621.1-3 (2010): 498-501. [63] Roush, Marvin L., M. A. Wilson, and William F. Hornyak, "Pulse shape discrimination." Nuclear Instruments and Methods 31.1 (1964): 112-124. [64] Chuan, P. V., et al. "A study on the impact of pulse shaping parameters on zero-crossing method performance for neutron/gamma discrimination." IEEE Transactions on Nuclear Science (2023). [65] THS 3202 DataSheet, Texas Instruments, (2010). [66] MAX 4200 DataSheet, Maxim integrated, (2017). [67] Texas Instruments DataSheet OPA615, Texas Instruments, (2009). [68] STM32H75x DataSheet, Microchip Technology, (2021). [69] David I. Shippen, Malcolm J. Joyce, and Michael D. Aspinall, A Wavelet Packet Transform Inspired Method ofNeutron-Gamma Discrimination, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 5, OCTOBER 2010. Số: 2190/QĐ-BGDĐT, Ngày 30 tháng 6 năm 2021 Về vệc phê duyệt Danh mục đề tài khoa học và công nghệ cấp bộ thực hiện từ năm 2022 Số: 1487/QĐ-ĐHĐL, Ngày 14 tháng 12 năm 2023 Về vệc thành lập Hộ đồng nghiệm thu đánh giá cấp cơ sở đề tài khoa học và công nghệ cấp Bộ thực hiện từ năm 2022 Số: 550/QĐ-BGDĐT, Ngày 7 tháng 2 năm 2024 Về vệc thành lập Hộ đồng đánh giá nghiệm thu cấp bộ đề tài khoa học và công nghệ cấp bộ 450.000.000 đồng