Clarke’s Tangent cones, subgradients, optimality conditions, and the Lipschitzness at infinity

We first study Clarke's tangent cones at infinity to unbounded subsets of \BbbR n. We prove that these cones are closed convex and show a characterization of their interiors. We then study subgradients at infinity for extended real value functions on \BbbR n and derive necessary optimality c...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile Nagusiak: Nguyễn Minh Tùng, Phạm, Tiến Sơn
Formatua: Journal article
Hizkuntza:English
Argitaratua: 2024
Gaiak:
Sarrera elektronikoa:https://scholar.dlu.edu.vn/handle/123456789/3629
https://epubs.siam.org/doi/abs/10.1137/23M1545367
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Deskribapena
Gaia:We first study Clarke's tangent cones at infinity to unbounded subsets of \BbbR n. We prove that these cones are closed convex and show a characterization of their interiors. We then study subgradients at infinity for extended real value functions on \BbbR n and derive necessary optimality conditions at infinity for optimization problems. We also give a number of rules for the computing of subgradients at infinity and provide some characterizations of the Lipschitz continuity at infinity for lower semicontinuous functions.