Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
This paper focuses on the study of a generalized semi-infinite programming, where the objective and the constraint functions are all real polynomials.We present amethod for finding ts global minimizers and global minimum using a hierarchy of semidefinite programming relaxations and prove the converg...
Gorde:
Egile Nagusiak: | Liguo Jiao, Jae Hyoung, Phạm, Tiến Sơn |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
2024
|
Gaiak: | |
Sarrera elektronikoa: | https://scholar.dlu.edu.vn/handle/123456789/3630 https://doi.org/10.1007/s40306-024-00551-7 |
Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Antzeko izenburuak
-
Semi-infinite optimization of controllable processes /
nork: Rapoport, E. Y. -
Fermat’s rule at infinity in non-degenerate semi-algebraic optimization
nork: Phạm, Tiến Sơn, et al.
Argitaratua: (2024) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
nork: Vaithilingam, Jeyakumar, et al.
Argitaratua: (2023) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
nork: Vaithilingam, Jeyakumar, et al.
Argitaratua: (2023) -
Positive polynomials and sums of squares /
nork: Marshall, Murray.
Argitaratua: (2008)