Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
This paper focuses on the study of a generalized semi-infinite programming, where the objective and the constraint functions are all real polynomials.We present amethod for finding ts global minimizers and global minimum using a hierarchy of semidefinite programming relaxations and prove the converg...
Bewaard in:
Hoofdauteurs: | Liguo Jiao, Jae Hyoung, Phạm, Tiến Sơn |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
2024
|
Onderwerpen: | |
Online toegang: | https://scholar.dlu.edu.vn/handle/123456789/3630 https://doi.org/10.1007/s40306-024-00551-7 |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Gelijkaardige items
Newton polytope of good symmetric polynomials
door: Duc-Khanh Nguyen, et al.
Gepubliceerd in: (2023)
door: Duc-Khanh Nguyen, et al.
Gepubliceerd in: (2023)
Gelijkaardige items
-
Semi-infinite optimization of controllable processes /
door: Rapoport, E. Y. -
Fermat’s rule at infinity in non-degenerate semi-algebraic optimization
door: Phạm, Tiến Sơn, et al.
Gepubliceerd in: (2024) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
door: Vaithilingam, Jeyakumar, et al.
Gepubliceerd in: (2023) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
door: Vaithilingam, Jeyakumar, et al.
Gepubliceerd in: (2023) -
Positive polynomials and sums of squares /
door: Marshall, Murray.
Gepubliceerd in: (2008)