Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
This paper focuses on the study of a generalized semi-infinite programming, where the objective and the constraint functions are all real polynomials.We present amethod for finding ts global minimizers and global minimum using a hierarchy of semidefinite programming relaxations and prove the converg...
Сохранить в:
Главные авторы: | Liguo Jiao, Jae Hyoung, Phạm, Tiến Sơn |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2024
|
Предметы: | |
Online-ссылка: | https://scholar.dlu.edu.vn/handle/123456789/3630 https://doi.org/10.1007/s40306-024-00551-7 |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Схожие документы
-
Semi-infinite optimization of controllable processes /
по: Rapoport, E. Y. -
Fermat’s rule at infinity in non-degenerate semi-algebraic optimization
по: Phạm, Tiến Sơn, et al.
Опубликовано: (2024) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
по: Vaithilingam, Jeyakumar, et al.
Опубликовано: (2023) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
по: Vaithilingam, Jeyakumar, et al.
Опубликовано: (2023) -
Positive polynomials and sums of squares /
по: Marshall, Murray.
Опубликовано: (2008)