Limits of real bivariate rational functions
As an application, we propose an effective algorithm to verify the existence of the limit and compute the limit (if it exists). Our approach is geometric and is based on Puiseux expansions.
Enregistré dans:
Auteurs principaux: | Đinh Sĩ Tiệp, Feng Guo, Nguyễn Hồng Đức, Phạm, Tiến Sơn |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2024
|
Accès en ligne: | https://scholar.dlu.edu.vn/handle/123456789/3631 https://doi.org/10.1016/j.jsc.2024.102405 https://doi.org/10.1016/j.jsc.2024.102405 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Documents similaires
-
On types of degenerate critical points of real polynomial functions
par: Guo, Feng, et autres
Publié: (2021) -
Modelling and Identification with Rational Orthogonal Basis Functions
par: Heuberger, Peter S.C., et autres
Publié: (2020) -
Łojasiewicz-type inequalities with explicit exponents for the largest eigenvalue function of real symmetric polynomial matrices
par: Đinh, Sĩ Tiệp, et autres
Publié: (2023) -
Global Łojasiewicz inequalities on comparing the rate of growth of polynomial functions
par: Đinh, Sĩ Tiệp, et autres
Publié: (2023) -
A novel application of a bivariate regression model for binary and continuous outcomes to studies of fetal toxicity /
par: Najita, Julie S.