Limits of real bivariate rational functions
As an application, we propose an effective algorithm to verify the existence of the limit and compute the limit (if it exists). Our approach is geometric and is based on Puiseux expansions.
Guardat en:
Autors principals: | Đinh Sĩ Tiệp, Feng Guo, Nguyễn Hồng Đức, Phạm, Tiến Sơn |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
2024
|
Accés en línia: | https://scholar.dlu.edu.vn/handle/123456789/3631 https://doi.org/10.1016/j.jsc.2024.102405 https://doi.org/10.1016/j.jsc.2024.102405 |
Etiquetes: |
Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Ítems similars
-
On types of degenerate critical points of real polynomial functions
per: Guo, Feng, et al.
Publicat: (2021) -
Modelling and Identification with Rational Orthogonal Basis Functions
per: Heuberger, Peter S.C., et al.
Publicat: (2020) -
Łojasiewicz-type inequalities with explicit exponents for the largest eigenvalue function of real symmetric polynomial matrices
per: Đinh, Sĩ Tiệp, et al.
Publicat: (2023) -
Global Łojasiewicz inequalities on comparing the rate of growth of polynomial functions
per: Đinh, Sĩ Tiệp, et al.
Publicat: (2023) -
A novel application of a bivariate regression model for binary and continuous outcomes to studies of fetal toxicity /
per: Najita, Julie S.