Limits of real bivariate rational functions
As an application, we propose an effective algorithm to verify the existence of the limit and compute the limit (if it exists). Our approach is geometric and is based on Puiseux expansions.
Gardado en:
Những tác giả chính: | Đinh Sĩ Tiệp, Feng Guo, Nguyễn Hồng Đức, Phạm, Tiến Sơn |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
2024
|
Acceso en liña: | https://scholar.dlu.edu.vn/handle/123456789/3631 https://doi.org/10.1016/j.jsc.2024.102405 https://doi.org/10.1016/j.jsc.2024.102405 |
Các nhãn: |
Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Títulos similares
-
On types of degenerate critical points of real polynomial functions
por: Guo, Feng, et al.
Publicado: (2021) -
Modelling and Identification with Rational Orthogonal Basis Functions
por: Heuberger, Peter S.C., et al.
Publicado: (2020) -
Łojasiewicz-type inequalities with explicit exponents for the largest eigenvalue function of real symmetric polynomial matrices
por: Đinh, Sĩ Tiệp, et al.
Publicado: (2023) -
Global Łojasiewicz inequalities on comparing the rate of growth of polynomial functions
por: Đinh, Sĩ Tiệp, et al.
Publicado: (2023) -
A novel application of a bivariate regression model for binary and continuous outcomes to studies of fetal toxicity /
por: Najita, Julie S.