A SMART FARM MANAGEMENT APPLICATION USING YOLOv11

As agriculture modernizes, integrating artificial intelligence (AI), image processing, and object recognition into farm management systems has become essential, especially in livestock farming, where traditional methods fall short. This paper introduces a smart farm application using the YOLOv11 mod...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile Nagusiak: Dang Thi Quynh Nhu, Dau Thi Tieu Diep, Phan Thanh Thao Quyen, Nguyễn, Hữu Khánh, Dương, Bảo Ninh, Nguyễn, Thị Lương
Formatua: Conference paper
Hizkuntza:Vietnamese
Argitaratua: 2025
Gaiak:
Sarrera elektronikoa:https://scholar.dlu.edu.vn/handle/123456789/4938
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Deskribapena
Gaia:As agriculture modernizes, integrating artificial intelligence (AI), image processing, and object recognition into farm management systems has become essential, especially in livestock farming, where traditional methods fall short. This paper introduces a smart farm application using the YOLOv11 model for real-time object detection to enhance livestock monitoring and control. The system, built with Python (backend), ReactJS (frontend), NodeJS, and Capacitor for mobile deployment, detects anomalies such as abnormal animal behavior or unauthorized access. It tracks individual animals' data and supports resource planning, disease monitoring, and intelligent reporting. Designed for small to medium-sized farms, the application improves productivity, security, and sustainability by aligning with the digital transformation of agriculture.