A SMART FARM MANAGEMENT APPLICATION USING YOLOv11

As agriculture modernizes, integrating artificial intelligence (AI), image processing, and object recognition into farm management systems has become essential, especially in livestock farming, where traditional methods fall short. This paper introduces a smart farm application using the YOLOv11 mod...

全面介紹

Đã lưu trong:
書目詳細資料
Những tác giả chính: Dang Thi Quynh Nhu, Dau Thi Tieu Diep, Phan Thanh Thao Quyen, Nguyễn, Hữu Khánh, Dương, Bảo Ninh, Nguyễn, Thị Lương
格式: Conference paper
語言:Vietnamese
出版: 2025
主題:
在線閱讀:https://scholar.dlu.edu.vn/handle/123456789/4938
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
實物特徵
總結:As agriculture modernizes, integrating artificial intelligence (AI), image processing, and object recognition into farm management systems has become essential, especially in livestock farming, where traditional methods fall short. This paper introduces a smart farm application using the YOLOv11 model for real-time object detection to enhance livestock monitoring and control. The system, built with Python (backend), ReactJS (frontend), NodeJS, and Capacitor for mobile deployment, detects anomalies such as abnormal animal behavior or unauthorized access. It tracks individual animals' data and supports resource planning, disease monitoring, and intelligent reporting. Designed for small to medium-sized farms, the application improves productivity, security, and sustainability by aligning with the digital transformation of agriculture.