On types of degenerate critical points of real polynomial functions
In this paper, we consider the problem of identifying the type (local minimizer, maximizer or saddle point) of a given isolated real critical point c, which is degenerate, of a multivariate polynomial function f. To this end, we introduce the definition of faithful radius of c by means of the curve...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Elsevier
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://scholar.dlu.edu.vn/handle/123456789/497 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
الملخص: | In this paper, we consider the problem of identifying the type (local minimizer, maximizer or saddle point) of a given isolated real critical point c, which is degenerate, of a multivariate polynomial function f. To this end, we introduce the definition of faithful radius of c by means of the curve of tangency of f. We show that the type of c can be determined by the global extrema of f over the Euclidean ball centered at c with a faithful radius. We propose algorithms to compute faithful radius of c and determine its type. |
---|