On types of degenerate critical points of real polynomial functions
In this paper, we consider the problem of identifying the type (local minimizer, maximizer or saddle point) of a given isolated real critical point c, which is degenerate, of a multivariate polynomial function f. To this end, we introduce the definition of faithful radius of c by means of the curve...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Journal article |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | http://scholar.dlu.edu.vn/handle/123456789/497 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Sumario: | In this paper, we consider the problem of identifying the type (local minimizer, maximizer or saddle point) of a given isolated real critical point c, which is degenerate, of a multivariate polynomial function f. To this end, we introduce the definition of faithful radius of c by means of the curve of tangency of f. We show that the type of c can be determined by the global extrema of f over the Euclidean ball centered at c with a faithful radius. We propose algorithms to compute faithful radius of c and determine its type. |
---|