Existence of efficient and properly efficient solutions to problems of constrained vector optimization

The paper is devoted to the existence of global optimal solutions for a general class of nonsmooth problems of constrained vector optimization without boundedness assumptions on constraint set. The main attention is paid to the two major notions of optimality in vector problems: Pareto efficiency...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Kim, Do Sang, Mordukhovich, Boris S., Phạm, Tiến Sơn, Nguyen, Van Tuyen
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: SpringerLink 2021
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/501
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:The paper is devoted to the existence of global optimal solutions for a general class of nonsmooth problems of constrained vector optimization without boundedness assumptions on constraint set. The main attention is paid to the two major notions of optimality in vector problems: Pareto efficiency and proper efficiency in the sense of Geoffrion. Employing adequate tools of variational analysis and generalized differentiation, we first establish relationships between the notions of properness, M-tameness, and the Palais–Smale conditions formulated for the restriction of the vector cost mapping on the constraint set. These results are instrumental to derive verifiable necessary and sufficient conditions for the existence of Pareto efficient solutions in vector optimization. Furthermore, the developed approach allows us to obtain new sufficient conditions for the existence of Geoffrion-properly efficient solutions to such constrained vector problems.