COPPER HEXACYANOFERRATE (II): SYNTHESIS, CHARACTERIZATION, AND CESIUM, STRONTIUM ADSORBENT APPLICATION
Low-cost nanoscale copper hexacyanoferrate (CuHF), a good selective adsorbent for cesium (Cs+) removal, was prepared using the chemical co-precipitation method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and high-resolution tr...
Đã lưu trong:
Những tác giả chính: | , , , , , , , |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Trường Đại học Đà Lạt
2023
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/114427 https://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/901 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Tóm tắt: | Low-cost nanoscale copper hexacyanoferrate (CuHF), a good selective adsorbent for cesium (Cs+) removal, was prepared using the chemical co-precipitation method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and high-resolution transmission electron microscopy (HR-TEM) were conducted to determine the CuHF morphology. Copper hexacyanoferrate, Cu13[Fe(CN)6]14.(2K).10H2O, has a cubic structure (space group F-43m) in the range of 10-30 nm and a Brunauer-Emmett-Teller (BET) surface area of 462.42 m2/g. The removal of Cs+ and Sr2+ is dependent on pH; the maximum adsorption capacity (qmax) of CuHF is achieved at a pH = 6. From the Langmuir model, qmax = 143.95 mg/g for Cs+ and 79.26 mg/g for Sr2+, respectively. At high concentrations, Na+, Ca2+, and K+ ions have very little effect on Cs+ removal, and Na+ and K+ ions have a higher affinity for removing Sr2+ than Ca2+ at all concentrations. CuHF has a high affinity for alkaline cations in the order: Cs+ > K+ > Na+ > Ca2+ > Sr2+, as proposed and discussed. |
---|