COULOMB DRAG RESISTIVITY IN DOUBLE-LAYER GRAPHENE: INHOMOGENEITY EFFECTS

We investigate Coulomb drag resistivity in a double-layer system consisting of two parallel monolayer graphene sheets. In calculations, we employ the random-phase approximation to determine the polarizability functions of the graphene layers and the frequency-dependent dielectric function of the str...

Disgrifiad llawn

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Prif Awduron: Nguyen, Manh Tien, Nguyen, Van Men
Fformat: Erthygl
Iaith:English
Cyhoeddwyd: Trường Đại học Đà Lạt 2024
Pynciau:
Mynediad Ar-lein:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/256918
https://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/1283
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Disgrifiad
Crynodeb:We investigate Coulomb drag resistivity in a double-layer system consisting of two parallel monolayer graphene sheets. In calculations, we employ the random-phase approximation to determine the polarizability functions of the graphene layers and the frequency-dependent dielectric function of the structure, taking into account inhomogeneity effects of the background dielectric. Our numerical calculations reveal that Coulomb drag resistivity in double-layer graphene systems steadily increases with increasing temperature but quickly decreases as the interlayer separation increases. The drag resistivity between the two layers in the case of an inhomogeneous background dielectric is substantially larger than that in the case of a homogeneous one. In addition, both the value and the imbalance in carrier density in the layers lead to noticeable changes in Coulomb drag resistivity in the system. Our study results are useful in graphene-based structure applications.