Application of artificial neural network with fine–tuning parameters for forecasting PM2.5 in deep open–pit mines: A case study
Enregistré dans:
Auteurs principaux: | Xuan, Nam Bui, Hoang, Nguyen, Qui, Thao Le, Tran, Quang Hieu |
---|---|
Format: | Article |
Langue: | Vietnamese |
Publié: |
2025
|
Sujets: | |
Accès en ligne: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/271131 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Documents similaires
-
Exploiting the results of running the GEOS-CF model to evaluate PM2.5 concentration in near real-time in Vietnam
par: Uyen, Khanh Le, et autres
Publié: (2025) -
Application of EnHEBIS tool to assess economic impact due to health effects from PM2.5 pollution – A case study at Long An province, Vietnam
par: Phong, Hoang Nguyen, et autres
Publié: (2025) -
Development of a prototype system of the very short-range forecast of precipitation in Vietnam
par: Kazuo, Saito, et autres
Publié: (2025) -
Forecasting the track and intensity Damrey storm in 2017 by the multi–physical ensemble Kalman filter
par: Minh, Thi Pham, et autres
Publié: (2025) -
Trend and forecast the saline intrusion at estuaries in the coastal Mekong delta: A case study of the coastal sub–region between the Tien and Hau rivers
par: Nguyen, Van Hong, et autres
Publié: (2025)