Nonlinear Time Series Semiparametric and Nonparametric Methods

During the past two decades or so, there has been a lot of interest in both theoretical and empirical analysis of nonlinear time series data. Models and methods used have been based initially on parametric nonlinear or nonparametric time series models. Such parametric nonlinear models and relate...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Gao, Jiti
Định dạng: Sách
Ngôn ngữ:English
Được phát hành: Chapman & Hall 2012
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/30554
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:During the past two decades or so, there has been a lot of interest in both theoretical and empirical analysis of nonlinear time series data. Models and methods used have been based initially on parametric nonlinear or nonparametric time series models. Such parametric nonlinear models and related methods may be too restrictive in many cases. This leads to various nonparametric techniques being used to model nonlinear time series data. The main advantage of using nonparametric methods is that the data may be allowed to speak for themselves in the sense of determining the form of mathematical relationships between time series variables. In modelling nonlinear time series data one of the tasks is to study the structural relationship between the present observation and the history of the data set.