Multivariate Tests for Time Series Models

In their earlier, companion volume, Univariate Tests for Time Series Models (No. 99 of this series), the authors laid the groundwork for the explanation of tests for univariate stochastic (random) time series models. With such analysis, an essential first question is, "Does the stochastic proce...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Lewis-Beck, Michael S.
Định dạng: Sách
Ngôn ngữ:English
Được phát hành: Sage Publications 2012
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/30566
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:In their earlier, companion volume, Univariate Tests for Time Series Models (No. 99 of this series), the authors laid the groundwork for the explanation of tests for univariate stochastic (random) time series models. With such analysis, an essential first question is, "Does the stochastic process change over time?" If, for variable X, the answer is "yes," then it is nonstationary. A typical example of a nonstationary time series is United States Gross National Product (GNP), which has generally drifted upward since the 1930s (considering its more or less steadily rising mean value over the period). Upon reflection, it is obvious that many social science variables measured across time are nonstationary. Lamentably, uncritical analysis of nonstationary time series can generate spurious results.