Proper andisolated efficiencies in multiobjective optimization problems
We employ some advanced tools of variational analysis and generalized differentiation such as the nonsmooth version of Fermat's rule, the limiting subdifferentia! of maximum functions, and the sum rules for the Frechet and Mordukhovich subdiHerentials to establish necessary conditions for (l...
Đã lưu trong:
Tác giả chính: | |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Trường Đại học Đà Lạt
2012
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/31063 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Tóm tắt: | We employ some advanced tools of variational analysis and generalized
differentiation such as the nonsmooth version of Fermat's rule, the limiting subdifferentia!
of maximum functions, and the sum rules for the Frechet and Mordukhovich
subdiHerentials to establish necessary conditions for (local) properly efficient solutions
and (local) isolated minimizers of a multiobjective optimization problem involving
inequality and equality constraints. Sufficient conditions for the existence of such
solutions are also supplied under assumptions of (local) convex/affine functions or
L-invex-infine functions defined in terms of the limiting subdifferential of locally Lipschitz
functions. In addition, we propose a type of Wolfe dual problem and explore
weak/strong duality relations under L-invexity-infineness hypotheses.Mathematics Subject Classification. 49J40, 49J53, 90C29. |
---|