Andrzej Mostowski and Foundational Studies

The standard definition of limz→∞ F(z) = ∞ is an ∀∃∀ sentence. Mostowski showed that in the standard model of arithmetic, these quantifiers cannot be eliminated. But Abraham Robinson showed that in the nonstandard setting, this limit property for a standard function F is equivalent to the one qua...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Ehrenfeucht, A, Marek, V.W, Srebrny, M
Định dạng: Sách
Ngôn ngữ:English
Được phát hành: IOS Press 2013
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/35161
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:The standard definition of limz→∞ F(z) = ∞ is an ∀∃∀ sentence. Mostowski showed that in the standard model of arithmetic, these quantifiers cannot be eliminated. But Abraham Robinson showed that in the nonstandard setting, this limit property for a standard function F is equivalent to the one quantifier statement that F(z) is infinite for all infinite z. In general, the number of quantifier blocks needed to define the limit depends on the underlying structureMin which one is working. Given a structureMwith an ordering, we add a new function symbol F to the vocabulary ofMand ask for the minimum number of quantifier blocks needed to define the class of structures (M, F) in which limz→∞ F(z) = ∞ holds. We show that the limit cannot be defined with fewer than three quantifier blocks when the underlying structureMis either countable, special, or an o-minimal expansion of the real ordered field. But there are structuresMwhich are so powerful that the limit property for arbitrary functions can be defined in both two-quantifier forms.