Data Analysis Using Regression and Multilevel/Hierarchical Models

This book originated as lecture notes for a course in regression and multilevel modeling, offered by the statistics department at Columbia University and attended by graduate students and postdoctoral researchers in social sciences (political science, economics, psychology, education, business, s...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Gelman, Andrew, Hill, Jennifer
Định dạng: Sách
Ngôn ngữ:English
Được phát hành: Cambridge University Press 2013
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/35575
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:This book originated as lecture notes for a course in regression and multilevel modeling, offered by the statistics department at Columbia University and attended by graduate students and postdoctoral researchers in social sciences (political science, economics, psychology, education, business, social work, and public health) and statistics. The prerequisite is statistics up to and including an introduction to multiple regression. Advanced mathematics is not assumed—it is important to understand the linear model in regression, but it is not necessary to follow the matrix algebra in the derivation of least squares computations. It is useful to be familiar with exponents and logarithms, especially when working with generalized linear models.