Three-Dimensional Partonic Structure of the Nucleon

The three-dimensional nucleon structure is central to many theoretical and experimental activities, and research in this field has seen many advances in the last two decades, addressing fundamental questions such as the orbital motion of quarks and gluons inside the nucleons, their spatial distribut...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: M. Anselmino, Avakian, H., Hasch, D., Schweitzer, P.
Định dạng: Sách
Ngôn ngữ:English
Được phát hành: IOS Press 2014
Truy cập trực tuyến:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/36596
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:The three-dimensional nucleon structure is central to many theoretical and experimental activities, and research in this field has seen many advances in the last two decades, addressing fundamental questions such as the orbital motion of quarks and gluons inside the nucleons, their spatial distribution, and the correlation between spin and intrinsic motion. A real three-dimensional imaging of the nucleon as a composite object, both in momentum and coordinate space, is slowly emerging. This book presents lectures and seminars from the Enrico Fermi School: Three-Dimensional Partonic Structure of the Nucleon, held in Varenna, Italy, in June and July 2011. The topics covered include: partonic distributions, fragmentation functions and factorization in QCD; theory of transverse momentum dependent partonic distributions (TMDs) and generalized partonic distributions (GPDs); experimental methods in studies of hard scattering processes; extraction of TMDs and GPDs from data; analysis tools for azimuthal asymmetries; models for TMDs and numerical methods; future experiments. The school aimed to educate postgraduate students to enable them to specialize in hard scattering and partonic azimuthal distributions analysis, thus equipping them to joining any of the current dedicated experiments or perform theoretical and phenomenological studies of TMDs and GPDs.