4-regular graph of diameter 2

A regular graph is a graph where each vertex has the same degree. A regular graph with vertices of degree k is called a k -regular graph or regular graph of degree k . Let G be a graph, the distance between two vertices in G is the number of edges in a shortest path connecting them. The diameter o...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Do, Nhu An, Nguyen, Dinh Ai
Định dạng: Bài viết
Ngôn ngữ:English
Được phát hành: Trường Đại học Đà Lạt 2014
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/37521
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:DLU123456789-37521
record_format dspace
spelling oai:scholar.dlu.edu.vn:DLU123456789-375212023-10-27T14:42:20Z 4-regular graph of diameter 2 Do, Nhu An Nguyen, Dinh Ai Regular graph Strongly regular graph A regular graph is a graph where each vertex has the same degree. A regular graph with vertices of degree k is called a k -regular graph or regular graph of degree k . Let G be a graph, the distance between two vertices in G is the number of edges in a shortest path connecting them. The diameter of G is the greatest distance between any pair of vertices. Let n4 be maximum integer number so that there exists an 4-regular graph on n4 vertices of diameter 2. We prove that n4 = 15. 2014-06-05T07:07:55Z 2014-06-05T07:07:55Z 2013 Article https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/37521 en Tạp chí Khoa học Đại học Đà Lạt, số 6;tr. 5-11 application/pdf Trường Đại học Đà Lạt
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Regular graph
Strongly regular graph
spellingShingle Regular graph
Strongly regular graph
Do, Nhu An
Nguyen, Dinh Ai
4-regular graph of diameter 2
description A regular graph is a graph where each vertex has the same degree. A regular graph with vertices of degree k is called a k -regular graph or regular graph of degree k . Let G be a graph, the distance between two vertices in G is the number of edges in a shortest path connecting them. The diameter of G is the greatest distance between any pair of vertices. Let n4 be maximum integer number so that there exists an 4-regular graph on n4 vertices of diameter 2. We prove that n4 = 15.
format Article
author Do, Nhu An
Nguyen, Dinh Ai
author_facet Do, Nhu An
Nguyen, Dinh Ai
author_sort Do, Nhu An
title 4-regular graph of diameter 2
title_short 4-regular graph of diameter 2
title_full 4-regular graph of diameter 2
title_fullStr 4-regular graph of diameter 2
title_full_unstemmed 4-regular graph of diameter 2
title_sort 4-regular graph of diameter 2
publisher Trường Đại học Đà Lạt
publishDate 2014
url https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/37521
_version_ 1819807556616323072