General relativity
Part I. Fundamentals -- 1. Introduction -- 1.1 Introduction -- 1.2 Space and Time in Prerelativity Physics and in Special Relativity -- 1.3 The Spacetime Metric -- 1.4 General Relativity -- 2. Manifolds and Tensor Fields -- 2.1 Manifolds -- 2.2 Vectors -- 2.3 Tensors the Metric Tensor -- 2...
Đã lưu trong:
Tác giả chính: | |
---|---|
Định dạng: | Sách |
Ngôn ngữ: | English |
Được phát hành: |
University of Chicago
2014
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/40544 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:DLU123456789-40544 |
---|---|
record_format |
dspace |
spelling |
oai:scholar.dlu.edu.vn:DLU123456789-405442023-11-11T05:10:06Z General relativity Wald, Robert M Physics General relativity Part I. Fundamentals -- 1. Introduction -- 1.1 Introduction -- 1.2 Space and Time in Prerelativity Physics and in Special Relativity -- 1.3 The Spacetime Metric -- 1.4 General Relativity -- 2. Manifolds and Tensor Fields -- 2.1 Manifolds -- 2.2 Vectors -- 2.3 Tensors the Metric Tensor -- 2.4 The Abstract Index Notation -- 3. Curvature -- 3.1 Derivative Operators and Parallel Transport -- 3.2 Curvature -- 3.3 Geodesics -- 3.4 Methods for Computing Curvature -- 4. Einstein's Equation -- 4.1 The Geometry of Space in Prerelativity Physics -- General and Special Covariance -- 4.2 Special Relativity -- 4.3 General Relativity -- 4.4 Linearized Gravity: The Newtonian Limit and Gravitational Radiation -- 5. Homogeneous, Isotropic Cosmology -- 5.1 Homogeneity and Isotrophy -- 5.2 Dynamics of a Homogeneous, Isotropic Universe -- 5.3 The Cosmological Redshift -- Horizons -- 5.4 The Evolution of Our Universe -- 6. The Schwartzschild Solution. 6.1 Derivation of the Schwartzschild Solution -- 6.2 Interior Solutions -- 6.3 Geodesics of Schwartzschild: Gravitation Redshift, Perihelion Precession, Bending of Light, and Time Delay -- 6.4 The Kruskal Extension -- Part II. Advanced Topics -- 7. Methods for Solving Einstein's Equation -- 7.1 Stationary, Axisymmetric Solutions -- 7.2 Spatially Homogeneous Cosmologies -- 7.3 Algebraically Special Solutions -- 7.4 Methods for Generating Solutions -- 7.5 Perturbations -- 8. Casual Structure -- 8.1 Futures and Pasts: Basic Definitions and Results -- 8.2 Causality Conditions -- 8.3 Domains of Dependence -- Global Hyperbolicity -- 9. Singularities -- 9.1 What is a Singularity? -- 9.2 Timelike and Null Geodesic Congruences -- 9.3 Conjugate Points -- 9.4 Existence of Maximum Length Curves -- 9.5 Singularity Theorems -- 10. The Initial Value Formulation -- 10.1 Initial Value Formulation for Particles and Fields -- 10.2 Initial Value Formulation of General Relativity. 11. Asymptotic Flatness -- 11.1 Conformal Infinity -- 11.2 Energy -- 12. Black Holes -- 12.1 Black Holes and the Cosmic Censor Conjecture -- 12.2 General Properties of Black Holes -- 12.3 The Charged Kerr Black Holes -- 12.4 Energy Extraction from Black Holes -- 12.5 Black Holes and Thermodynamics -- 13. Spinors -- 13.1 Spinors in Minkowski Spacetime -- 13.2 Spinors in Curved Spacetime -- 14. Quantum Effects in Strong Gravitational Fields -- 14.1 Quantum Gravity -- 14.2 Quantum Fields in Curved Spacetime -- 14.3 Particle Creation near Black Holes -- 14.4 Black Hold Thermodynamics -- Appendices -- A. Topological Spaces -- B. Differential Forms, Integration, and Frobenius's Theorem -- B.1 Differential Forms -- B.2 Integration -- B.3 Frobenius's Theorem -- C. Maps of Manifolds, Lie Derivatives, and Killing Fields -- C. 1 Maps of Manifolds -- C. 2 Lie Derivatives -- C. 3 Killing Vector Fields -- D. Conformal Transformations -- E. Lagrangian and Hamiltonian Formulations of Einstein's Equation -- E.1 Lagrangian Formulation -- E.2 Hamiltonian Formulation -- F. Units and Dimensions. 2014-12-19T03:14:53Z 2014-12-19T03:14:53Z 1984 Book 0-226-87033-2 https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/40544 en application/pdf University of Chicago |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Physics General relativity |
spellingShingle |
Physics General relativity Wald, Robert M General relativity |
description |
Part I. Fundamentals --
1. Introduction --
1.1 Introduction --
1.2 Space and Time in Prerelativity Physics and in Special Relativity --
1.3 The Spacetime Metric --
1.4 General Relativity --
2. Manifolds and Tensor Fields --
2.1 Manifolds --
2.2 Vectors --
2.3 Tensors the Metric Tensor --
2.4 The Abstract Index Notation --
3. Curvature --
3.1 Derivative Operators and Parallel Transport --
3.2 Curvature --
3.3 Geodesics --
3.4 Methods for Computing Curvature --
4. Einstein's Equation --
4.1 The Geometry of Space in Prerelativity Physics --
General and Special Covariance --
4.2 Special Relativity --
4.3 General Relativity --
4.4 Linearized Gravity: The Newtonian Limit and Gravitational Radiation --
5. Homogeneous, Isotropic Cosmology --
5.1 Homogeneity and Isotrophy --
5.2 Dynamics of a Homogeneous, Isotropic Universe --
5.3 The Cosmological Redshift --
Horizons --
5.4 The Evolution of Our Universe --
6. The Schwartzschild Solution. 6.1 Derivation of the Schwartzschild Solution --
6.2 Interior Solutions --
6.3 Geodesics of Schwartzschild: Gravitation Redshift, Perihelion Precession, Bending of Light, and Time Delay --
6.4 The Kruskal Extension --
Part II. Advanced Topics --
7. Methods for Solving Einstein's Equation --
7.1 Stationary, Axisymmetric Solutions --
7.2 Spatially Homogeneous Cosmologies --
7.3 Algebraically Special Solutions --
7.4 Methods for Generating Solutions --
7.5 Perturbations --
8. Casual Structure --
8.1 Futures and Pasts: Basic Definitions and Results --
8.2 Causality Conditions --
8.3 Domains of Dependence --
Global Hyperbolicity --
9. Singularities --
9.1 What is a Singularity? --
9.2 Timelike and Null Geodesic Congruences --
9.3 Conjugate Points --
9.4 Existence of Maximum Length Curves --
9.5 Singularity Theorems --
10. The Initial Value Formulation --
10.1 Initial Value Formulation for Particles and Fields --
10.2 Initial Value Formulation of General Relativity. 11. Asymptotic Flatness --
11.1 Conformal Infinity --
11.2 Energy --
12. Black Holes --
12.1 Black Holes and the Cosmic Censor Conjecture --
12.2 General Properties of Black Holes --
12.3 The Charged Kerr Black Holes --
12.4 Energy Extraction from Black Holes --
12.5 Black Holes and Thermodynamics --
13. Spinors --
13.1 Spinors in Minkowski Spacetime --
13.2 Spinors in Curved Spacetime --
14. Quantum Effects in Strong Gravitational Fields --
14.1 Quantum Gravity --
14.2 Quantum Fields in Curved Spacetime --
14.3 Particle Creation near Black Holes --
14.4 Black Hold Thermodynamics --
Appendices --
A. Topological Spaces --
B. Differential Forms, Integration, and Frobenius's Theorem --
B.1 Differential Forms --
B.2 Integration --
B.3 Frobenius's Theorem --
C. Maps of Manifolds, Lie Derivatives, and Killing Fields --
C. 1 Maps of Manifolds --
C. 2 Lie Derivatives --
C. 3 Killing Vector Fields --
D. Conformal Transformations --
E. Lagrangian and Hamiltonian Formulations of Einstein's Equation --
E.1 Lagrangian Formulation --
E.2 Hamiltonian Formulation --
F. Units and Dimensions. |
format |
Book |
author |
Wald, Robert M |
author_facet |
Wald, Robert M |
author_sort |
Wald, Robert M |
title |
General relativity |
title_short |
General relativity |
title_full |
General relativity |
title_fullStr |
General relativity |
title_full_unstemmed |
General relativity |
title_sort |
general relativity |
publisher |
University of Chicago |
publishDate |
2014 |
url |
https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/40544 |
_version_ |
1819806592657260544 |