Solid-state lasers: A graduate text
Introduction: Overview of the History, Performance Characteristics, and Applications of Solid-State Lasers 1 -- Major Milestones in the Development of Solid-State Lasers 1 -- Typical Performance Parameters and Applications 7 -- 1 Energy Transfer Between Radiation and Atomic Transitions 12 -- 1.1...
Đã lưu trong:
Những tác giả chính: | , |
---|---|
Định dạng: | Sách |
Ngôn ngữ: | English |
Được phát hành: |
Springer
2014
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/40554 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:DLU123456789-40554 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Solid-state lasers Physics |
spellingShingle |
Solid-state lasers Physics Koechner, Walter Bass, Michael Solid-state lasers: A graduate text |
description |
Introduction: Overview of the History, Performance Characteristics, and Applications of Solid-State Lasers 1 --
Major Milestones in the Development of Solid-State Lasers 1 --
Typical Performance Parameters and Applications 7 --
1 Energy Transfer Between Radiation and Atomic Transitions 12 --
1.1 Optical Amplification 12 --
1.2 Interaction of Radiation with Matter 15 --
1.2.1 Blackbody Radiation 15 --
1.2.2 Boltzmann's Statistics 16 --
1.2.3 Einstein's Coefficients 17 --
1.2.4 Phase Coherence of Stimulated Emission 20 --
1.3 Absorption and Optical Gain 21 --
1.3.1 Atomic Lineshapes 21 --
1.3.2 Absorption by Stimulated Transitions 25 --
1.3.3 Population Inversion 28 --
1.4 Creation of a Population Inversion 30 --
1.4.1 The Three-Level System 31 --
1.4.2 The Four-Level System 33 --
1.4.3 The Metastable Level 34 --
1.5 Laser Rate Equations 35 --
1.5.1 Three-Level System 36 --
1.5.2 Four-Level System 39 --
2 Properties of Solid-State Laser Materials 44 --
2.1.1 Host Materials 46 --
2.1.2 Active lons 48 --
2.2 Ruby 54 --
2.3 Nd: YAG 57 --
2.4 Nd: Glass 60 --
2.4.1 Laser Properties 60 --
2.5 Nd: YLF 63 --
2.6 Nd: YVO[subscript 4] 65 --
2.7 Er: Glass 67 --
2.8 Yb: YAG 68 --
2.9 Alexandrite 70 --
2.10 Ti: Sapphire 72 --
3 Laser Oscillator 78 --
3.1 Operation at Threshold 80 --
3.2 Gain Saturation 84 --
3.3 Circulating Power 86 --
3.4 Oscillator Performance Model 88 --
3.4.1 Conversion of Input to Output Energy 88 --
3.4.2 Laser Output 95 --
3.5 Relaxation Oscillations 102 --
3.6 Examples of Laser Oscillators 106 --
3.6.1 Lamp-Pumped cw Nd: YAG Laser 107 --
3.6.2 Diode Side-Pumped Nd: YAG Laser 111 --
3.6.3 End-Pumped Systems 115 --
4 Laser Amplifier 121 --
4.1 Pulse Amplification 122 --
4.2 Nd: YAG Amplifiers 127 --
4.3 Nd: Glass Amplifiers 135 --
4.4 Depopulation Losses 141 --
4.4.1 Amplified Spontaneous Emission 141 --
4.4.2 Prelasing and Parasitic Modes 144 --
4.5 Self-Focusing 144 --
5 Optical Resonator 149 --
5.1 Transverse Modes 149 --
5.1.1 Intensity Distribution 150 --
5.1.2 Characteristics of a Gaussian Beam 154 --
5.1.3 Resonator Configurations 156 --
5.1.4 Stability of Laser Resonators 160 --
5.1.5 Higher Order Modes 161 --
5.1.6 Diffraction Losses 162 --
5.1.7 Active Resonator 164 --
5.1.8 Mode-Selecting Techniques 166 --
5.2 Longitudinal Modes 169 --
5.2.1 The Fabry-Perot Interferometer 169 --
5.2.2 Laser Resonator 172 --
5.2.3 Longitudinal Mode Control 175 --
5.3 Unstable Resonators 178 --
6 Optical Pump Systems 187 --
6.1 Pump Sources 187 --
6.1.1 Flashlamps 187 --
6.1.2 Continuous Arc Lamps 196 --
6.1.3 Laser Diodes 198 --
6.2 Pump Radiation Transfer Methods 213 --
6.2.1 Side-Pumping with Lamps 214 --
6.2.2 Side-Pumping with Diodes 220 --
6.2.3 End-Pumped Lasers 230 --
6.2.4 Face-Pumped Disks 238 --
7 Thermo-Optic Effects 245 --
7.1 Cylindrical Geometry 248 --
7.1.1 Temperature Distribution 249 --
7.1.2 Thermal Stresses 251 --
7.1.3 Photoelastic Effects 253 --
7.1.4 Thermal Lensing 255 --
7.1.5 Stress Birefringence 258 --
7.1.6 Compensation of Thermally Induced Optical Distortions 263 --
7.2 Slab and Disk Geometries 265 --
7.2.1 Rectangular-Slab Laser 265 --
7.2.2 Slab Laser with Zigzag Optical Path 268 --
7.2.3 Disk Amplifiers 270 --
7.3 End-Pumped Configurations 271 --
8 Q-Switching 279 --
8.1 Q-Switch Theory 280 --
8.1.1 Continuously Pumped, Repetitively Q-Switched Systems 284 --
8.2 Mechanical Devices 288 --
8.3 Electro-Optical Q-Switches 289 --
8.4 Acousto-Optic Q-Switches 295 --
8.4.1 Device Characteristics 300 --
8.5 Passive Q-Switch 302 --
9 Mode-Locking 308 --
9.1 Pulse Formation 308 --
9.2 Passive Mode-Locking 315 --
9.2.1 Liquid Dye Saturable Absorber 316 --
9.2.2 Kerr Lens Mode-Locking 317 --
9.3 Active Mode-Locking 322 --
9.3.1 AM Modulation 322 --
9.3.2 FM Modulation 325 --
9.4 Picosecond Lasers 326 --
9.4.1 AM Mode-Locking 327 --
9.4.2 FM Mode-Locking 329 --
9.5 Femtosecond Lasers 331 --
9.5.1 Laser Materials 331 --
9.5.2 Resonator Design 332 --
10 Nonlinear Devices 339 --
10.1 Nonlinear Optics 340 --
10.1.1 Second-Order Nonlinearities 341 --
10.1.2 Third-Order Nonlinearities 343 --
10.2 Harmonic Generation 345 --
10.2.1 Basic Equations of Second-Harmonic Generation 345 --
10.2.2 Index Matching 348 --
10.2.3 Parameters Affecting the Doubling Efficiency 354 --
10.2.4 Intracavity Frequency Doubling 358 --
10.2.5 Third-Harmonic Generation 360 --
10.3 Parametric Oscillators 363 --
10.3.1 Performance Modeling 365 --
10.3.2 Quasi-Phase-Matching 372 --
10.4 Raman Laser 374 --
10.5 Optical Phase Conjugation 379. |
format |
Book |
author |
Koechner, Walter Bass, Michael |
author_facet |
Koechner, Walter Bass, Michael |
author_sort |
Koechner, Walter |
title |
Solid-state lasers: A graduate text |
title_short |
Solid-state lasers: A graduate text |
title_full |
Solid-state lasers: A graduate text |
title_fullStr |
Solid-state lasers: A graduate text |
title_full_unstemmed |
Solid-state lasers: A graduate text |
title_sort |
solid-state lasers: a graduate text |
publisher |
Springer |
publishDate |
2014 |
url |
https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/40554 |
_version_ |
1819811852823035904 |
spelling |
oai:scholar.dlu.edu.vn:DLU123456789-405542023-11-11T05:10:10Z Solid-state lasers: A graduate text Koechner, Walter Bass, Michael Solid-state lasers Physics Introduction: Overview of the History, Performance Characteristics, and Applications of Solid-State Lasers 1 -- Major Milestones in the Development of Solid-State Lasers 1 -- Typical Performance Parameters and Applications 7 -- 1 Energy Transfer Between Radiation and Atomic Transitions 12 -- 1.1 Optical Amplification 12 -- 1.2 Interaction of Radiation with Matter 15 -- 1.2.1 Blackbody Radiation 15 -- 1.2.2 Boltzmann's Statistics 16 -- 1.2.3 Einstein's Coefficients 17 -- 1.2.4 Phase Coherence of Stimulated Emission 20 -- 1.3 Absorption and Optical Gain 21 -- 1.3.1 Atomic Lineshapes 21 -- 1.3.2 Absorption by Stimulated Transitions 25 -- 1.3.3 Population Inversion 28 -- 1.4 Creation of a Population Inversion 30 -- 1.4.1 The Three-Level System 31 -- 1.4.2 The Four-Level System 33 -- 1.4.3 The Metastable Level 34 -- 1.5 Laser Rate Equations 35 -- 1.5.1 Three-Level System 36 -- 1.5.2 Four-Level System 39 -- 2 Properties of Solid-State Laser Materials 44 -- 2.1.1 Host Materials 46 -- 2.1.2 Active lons 48 -- 2.2 Ruby 54 -- 2.3 Nd: YAG 57 -- 2.4 Nd: Glass 60 -- 2.4.1 Laser Properties 60 -- 2.5 Nd: YLF 63 -- 2.6 Nd: YVO[subscript 4] 65 -- 2.7 Er: Glass 67 -- 2.8 Yb: YAG 68 -- 2.9 Alexandrite 70 -- 2.10 Ti: Sapphire 72 -- 3 Laser Oscillator 78 -- 3.1 Operation at Threshold 80 -- 3.2 Gain Saturation 84 -- 3.3 Circulating Power 86 -- 3.4 Oscillator Performance Model 88 -- 3.4.1 Conversion of Input to Output Energy 88 -- 3.4.2 Laser Output 95 -- 3.5 Relaxation Oscillations 102 -- 3.6 Examples of Laser Oscillators 106 -- 3.6.1 Lamp-Pumped cw Nd: YAG Laser 107 -- 3.6.2 Diode Side-Pumped Nd: YAG Laser 111 -- 3.6.3 End-Pumped Systems 115 -- 4 Laser Amplifier 121 -- 4.1 Pulse Amplification 122 -- 4.2 Nd: YAG Amplifiers 127 -- 4.3 Nd: Glass Amplifiers 135 -- 4.4 Depopulation Losses 141 -- 4.4.1 Amplified Spontaneous Emission 141 -- 4.4.2 Prelasing and Parasitic Modes 144 -- 4.5 Self-Focusing 144 -- 5 Optical Resonator 149 -- 5.1 Transverse Modes 149 -- 5.1.1 Intensity Distribution 150 -- 5.1.2 Characteristics of a Gaussian Beam 154 -- 5.1.3 Resonator Configurations 156 -- 5.1.4 Stability of Laser Resonators 160 -- 5.1.5 Higher Order Modes 161 -- 5.1.6 Diffraction Losses 162 -- 5.1.7 Active Resonator 164 -- 5.1.8 Mode-Selecting Techniques 166 -- 5.2 Longitudinal Modes 169 -- 5.2.1 The Fabry-Perot Interferometer 169 -- 5.2.2 Laser Resonator 172 -- 5.2.3 Longitudinal Mode Control 175 -- 5.3 Unstable Resonators 178 -- 6 Optical Pump Systems 187 -- 6.1 Pump Sources 187 -- 6.1.1 Flashlamps 187 -- 6.1.2 Continuous Arc Lamps 196 -- 6.1.3 Laser Diodes 198 -- 6.2 Pump Radiation Transfer Methods 213 -- 6.2.1 Side-Pumping with Lamps 214 -- 6.2.2 Side-Pumping with Diodes 220 -- 6.2.3 End-Pumped Lasers 230 -- 6.2.4 Face-Pumped Disks 238 -- 7 Thermo-Optic Effects 245 -- 7.1 Cylindrical Geometry 248 -- 7.1.1 Temperature Distribution 249 -- 7.1.2 Thermal Stresses 251 -- 7.1.3 Photoelastic Effects 253 -- 7.1.4 Thermal Lensing 255 -- 7.1.5 Stress Birefringence 258 -- 7.1.6 Compensation of Thermally Induced Optical Distortions 263 -- 7.2 Slab and Disk Geometries 265 -- 7.2.1 Rectangular-Slab Laser 265 -- 7.2.2 Slab Laser with Zigzag Optical Path 268 -- 7.2.3 Disk Amplifiers 270 -- 7.3 End-Pumped Configurations 271 -- 8 Q-Switching 279 -- 8.1 Q-Switch Theory 280 -- 8.1.1 Continuously Pumped, Repetitively Q-Switched Systems 284 -- 8.2 Mechanical Devices 288 -- 8.3 Electro-Optical Q-Switches 289 -- 8.4 Acousto-Optic Q-Switches 295 -- 8.4.1 Device Characteristics 300 -- 8.5 Passive Q-Switch 302 -- 9 Mode-Locking 308 -- 9.1 Pulse Formation 308 -- 9.2 Passive Mode-Locking 315 -- 9.2.1 Liquid Dye Saturable Absorber 316 -- 9.2.2 Kerr Lens Mode-Locking 317 -- 9.3 Active Mode-Locking 322 -- 9.3.1 AM Modulation 322 -- 9.3.2 FM Modulation 325 -- 9.4 Picosecond Lasers 326 -- 9.4.1 AM Mode-Locking 327 -- 9.4.2 FM Mode-Locking 329 -- 9.5 Femtosecond Lasers 331 -- 9.5.1 Laser Materials 331 -- 9.5.2 Resonator Design 332 -- 10 Nonlinear Devices 339 -- 10.1 Nonlinear Optics 340 -- 10.1.1 Second-Order Nonlinearities 341 -- 10.1.2 Third-Order Nonlinearities 343 -- 10.2 Harmonic Generation 345 -- 10.2.1 Basic Equations of Second-Harmonic Generation 345 -- 10.2.2 Index Matching 348 -- 10.2.3 Parameters Affecting the Doubling Efficiency 354 -- 10.2.4 Intracavity Frequency Doubling 358 -- 10.2.5 Third-Harmonic Generation 360 -- 10.3 Parametric Oscillators 363 -- 10.3.1 Performance Modeling 365 -- 10.3.2 Quasi-Phase-Matching 372 -- 10.4 Raman Laser 374 -- 10.5 Optical Phase Conjugation 379. 2014-12-23T07:35:16Z 2014-12-23T07:35:16Z 2003 Book https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/40554 en application/pdf Springer |