Data Preprocessing in Data Mining

Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Fur...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Luengo, Julián, Herrera, Francisco
Médium: Kniha
Jazyk:English
Vydáno: Springer 2015
Témata:
On-line přístup:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/57671
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Popis
Shrnutí:Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.