Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space...

সম্পূর্ণ বিবরণ

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Nasrollahi, Nasrin
বিন্যাস: গ্রন্থ
ভাষা:English
প্রকাশিত: Springer 2015
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/57789
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
বিবরন
সংক্ষিপ্ত:This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.