Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Nasrollahi, Nasrin
Formaat: Boek
Taal:English
Gepubliceerd in: Springer 2015
Onderwerpen:
Online toegang:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/57789
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Omschrijving
Samenvatting:This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.