Design of Experiments for Reinforcement Learning

This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not com...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autore principale: Gatti, Christopher
Natura: Libro
Lingua:English
Pubblicazione: Springer 2015
Soggetti:
Accesso online:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/57797
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Descrizione
Riassunto:This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems.