Bayesian Analysis of Failure Time Data Using P-Splines
Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
التنسيق: | كتاب |
اللغة: | English |
منشور في: |
Springer
2015
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/58112 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
الملخص: | Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model. |
---|