Bayesian Analysis of Failure Time Data Using P-Splines
Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for...
Kaydedildi:
Yazar: | |
---|---|
Materyal Türü: | Kitap |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer
2015
|
Konular: | |
Online Erişim: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/58112 |
Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Özet: | Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model. |
---|