Bayesian Analysis of Failure Time Data Using P-Splines

Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for...

全面介绍

Đã lưu trong:
书目详细资料
主要作者: Kaeding, Matthias
格式: 图书
语言:English
出版: Springer 2015
主题:
在线阅读:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/58112
标签: 添加标签
没有标签, 成为第一个标记此记录!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
实物特征
总结:Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model.