Mathematics of Aperiodic Order

What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of q...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Kellendonk, Johannes, Lenz, Daniel, Savinien, Jean
Định dạng: Sách
Ngôn ngữ:English
Được phát hành: Springer 2015
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/58400
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:DLU123456789-58400
record_format dspace
spelling oai:scholar.dlu.edu.vn:DLU123456789-584002023-11-11T06:10:40Z Mathematics of Aperiodic Order Kellendonk, Johannes Lenz, Daniel Savinien, Jean Operator theory Global analysis Differentiable dynamical systems What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. 2015-09-21T08:08:07Z 2015-09-21T08:08:07Z 2015 Book 978-3-0348-0903-0 978-3-0348-0902-3 https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/58400 en application/pdf Springer
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Operator theory
Global analysis
Differentiable dynamical systems
spellingShingle Operator theory
Global analysis
Differentiable dynamical systems
Kellendonk, Johannes
Lenz, Daniel
Savinien, Jean
Mathematics of Aperiodic Order
description What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics.
format Book
author Kellendonk, Johannes
Lenz, Daniel
Savinien, Jean
author_facet Kellendonk, Johannes
Lenz, Daniel
Savinien, Jean
author_sort Kellendonk, Johannes
title Mathematics of Aperiodic Order
title_short Mathematics of Aperiodic Order
title_full Mathematics of Aperiodic Order
title_fullStr Mathematics of Aperiodic Order
title_full_unstemmed Mathematics of Aperiodic Order
title_sort mathematics of aperiodic order
publisher Springer
publishDate 2015
url https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/58400
_version_ 1782544386152726528