Schwinger's Quantum Action Principle: From Dirac’s Formulation Through Feynman’s Path Integrals, the Schwinger-Keldysh Method, Quantum Field Theory, to Source Theory

Starting from the earlier notions of stationary action principles, these tutorial notes shows how Schwinger’s Quantum Action Principle descended from Dirac’s formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the conne...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Milton, Kimball A
Định dạng: Sách
Ngôn ngữ:English
Được phát hành: Springer 2016
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/59834
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:DLU123456789-59834
record_format dspace
spelling oai:scholar.dlu.edu.vn:DLU123456789-598342023-11-11T06:53:14Z Schwinger's Quantum Action Principle: From Dirac’s Formulation Through Feynman’s Path Integrals, the Schwinger-Keldysh Method, Quantum Field Theory, to Source Theory Milton, Kimball A General Mechanics Science Energy Quantum field theory Starting from the earlier notions of stationary action principles, these tutorial notes shows how Schwinger’s Quantum Action Principle descended from Dirac’s formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the connection between the two formulations, and applications are discussed. Then, the Keldysh-Schwinger time-cycle method of extracting matrix elements is described. Part II will discuss the variational formulation of quantum electrodynamics and the development of source theory. 2016-03-15T07:56:33Z 2016-03-15T07:56:33Z 2015 Book 978-3-319-20128-3 978-3-319-20127-6 https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/59834 en application/pdf Springer
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic General
Mechanics
Science
Energy
Quantum field theory
spellingShingle General
Mechanics
Science
Energy
Quantum field theory
Milton, Kimball A
Schwinger's Quantum Action Principle: From Dirac’s Formulation Through Feynman’s Path Integrals, the Schwinger-Keldysh Method, Quantum Field Theory, to Source Theory
description Starting from the earlier notions of stationary action principles, these tutorial notes shows how Schwinger’s Quantum Action Principle descended from Dirac’s formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the connection between the two formulations, and applications are discussed. Then, the Keldysh-Schwinger time-cycle method of extracting matrix elements is described. Part II will discuss the variational formulation of quantum electrodynamics and the development of source theory.
format Book
author Milton, Kimball A
author_facet Milton, Kimball A
author_sort Milton, Kimball A
title Schwinger's Quantum Action Principle: From Dirac’s Formulation Through Feynman’s Path Integrals, the Schwinger-Keldysh Method, Quantum Field Theory, to Source Theory
title_short Schwinger's Quantum Action Principle: From Dirac’s Formulation Through Feynman’s Path Integrals, the Schwinger-Keldysh Method, Quantum Field Theory, to Source Theory
title_full Schwinger's Quantum Action Principle: From Dirac’s Formulation Through Feynman’s Path Integrals, the Schwinger-Keldysh Method, Quantum Field Theory, to Source Theory
title_fullStr Schwinger's Quantum Action Principle: From Dirac’s Formulation Through Feynman’s Path Integrals, the Schwinger-Keldysh Method, Quantum Field Theory, to Source Theory
title_full_unstemmed Schwinger's Quantum Action Principle: From Dirac’s Formulation Through Feynman’s Path Integrals, the Schwinger-Keldysh Method, Quantum Field Theory, to Source Theory
title_sort schwinger's quantum action principle: from dirac’s formulation through feynman’s path integrals, the schwinger-keldysh method, quantum field theory, to source theory
publisher Springer
publishDate 2016
url https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/59834
_version_ 1819846357399109632