Global Aspects of Classical Integrable Systems
This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in...
Đã lưu trong:
Những tác giả chính: | , |
---|---|
Định dạng: | Sách |
Ngôn ngữ: | English |
Được phát hành: |
Springer
2016
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/59923 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:DLU123456789-59923 |
---|---|
record_format |
dspace |
spelling |
oai:scholar.dlu.edu.vn:DLU123456789-599232023-11-11T06:56:18Z Global Aspects of Classical Integrable Systems Cushman, Richard H Bates, Larry Topology Mathematics Hamiltonian systems Dynamics This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis. 2016-03-29T03:21:17Z 2016-03-29T03:21:17Z 2015 Book 978-3-0348-0918-4 978-3-0348-0917-7 https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/59923 en application/pdf Springer |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Topology Mathematics Hamiltonian systems Dynamics |
spellingShingle |
Topology Mathematics Hamiltonian systems Dynamics Cushman, Richard H Bates, Larry Global Aspects of Classical Integrable Systems |
description |
This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis. |
format |
Book |
author |
Cushman, Richard H Bates, Larry |
author_facet |
Cushman, Richard H Bates, Larry |
author_sort |
Cushman, Richard H |
title |
Global Aspects of Classical Integrable Systems |
title_short |
Global Aspects of Classical Integrable Systems |
title_full |
Global Aspects of Classical Integrable Systems |
title_fullStr |
Global Aspects of Classical Integrable Systems |
title_full_unstemmed |
Global Aspects of Classical Integrable Systems |
title_sort |
global aspects of classical integrable systems |
publisher |
Springer |
publishDate |
2016 |
url |
https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/59923 |
_version_ |
1819812822913122304 |