Đa thức Hyperbolic

Chương 1. là chương kiến thức chuẩn bị để nhắc lại một số kiến thức cơ bản có liên quan để dễ trình bày các kết quả cho các chương sau. Chương 2. Trình bày định nghĩa đa thức hyperbolic, các tính chất của nó và nghiệm của đa thức hyperbolic là Lipchitz địa phương. Tuy nhiên các nghiệm này có thể...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Nguyễn, Thanh Nghị
Outros Autores: Phạm, Tiến Sơn
Formato: Luận văn
Idioma:Vietnamese
Publicado em: Trường Đại học Đà Lạt 2017
Assuntos:
Acesso em linha:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/61500
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Descrição
Resumo:Chương 1. là chương kiến thức chuẩn bị để nhắc lại một số kiến thức cơ bản có liên quan để dễ trình bày các kết quả cho các chương sau. Chương 2. Trình bày định nghĩa đa thức hyperbolic, các tính chất của nó và nghiệm của đa thức hyperbolic là Lipchitz địa phương. Tuy nhiên các nghiệm này có thể không giải tích. Chương 3. Trình bày phép nổ hệ số của đa thức hyperbolic hay ta chứng minh được định lý nói rằng các nghiệm của đa thức hyperbolic có thể viết lại (một cách địa phương) như những hàm giải tích sau một số hữu hạn các phép nổ. Chương 4. Áp dụng định lý của chương 3 để chéo hóa (tương ứng thu gọn) một cách tương thích giải tích cho họ giải tích các ma trận đối xứng (tương ứng ma trận phản đối xứng).